AI kao umetnik: Nemoguća misija

Kreativnost jeste i uvek će biti ljudska, tvrdi harvardski profesor filozofije Sean Dorrance Kelly.

Bio je ti 31. mart 1913. godine kada su u Velikoj sali koncertne kuće Muzikferajn u Beču izbili neredi, usred izvođenja orkestracije pesme Albana Berga. Lomio se i nameštaj. Policija je uhapsila organizatora koncerta jer je udario Oskara Štrausa, malo poznatog kompozitora opereta. Štraus se kasnije, na suđenju, dosetkom osvrnuo na frustraciju publike. Udarac koji je zadobio, insistirao je on, bio je najskladniji zvuk tokom čitave te večeri. Istorija je donela drukčiju presudu: dirigent koncerta, ujedno i čuveni savremeni kompozitor i perjanica atonalne klasike, Arnold Schoenberg „propao“ je u tom trenutku kao možda najkreativniji i najuticajniji kompozitor dvadesetog veka.

Možda nećete uživati u Šenbergovoj disonantnoj muzici (za šta su velike šanse ukoliko nemate živaca, vremena i fokusa); muzike koja odbacuje konvencionalni tonalitet da bi rasporedila 12 nota skale prema pravilima koja ne dozvoljavaju da bilo koja prevladava. On je, međutim, promenio ono što ljudi shvataju kao muziku. To je ono što ga čini istinski kreativnim i inovativnim umetnikom. Šenbergove tehnike su sada besprekorno integrisane u sve: od filmskih partitura i brodvejskih mjuzikla, do solo deonica Milesa Davisa i Ornette Coleman-a.

Kreativnost je među najtajanstvenijim i najupečatljivijim dostignućima ljudskog postojanja. Ali, šta je to?

Kreativnost nije tek neka „novotarija našeg vremena“. I mališan za klavirom mogao bi pogoditi novu sekvencu nota, ali u nekom značajnijem, suštinskijem smislu, te note nisu kreativne. Takođe, kreativnost je ograničena istorijom: ono što se u jednom periodu ili mestu smatra kreativnom inspiracijom bi se, u nekom drugom, moglo zanemariti, shvatajući to kao smešno, glupo ili ludo. Zajednica mora prihvatiti one ideje koje su toliko dobre da su opšteprihvaćene kao kreativne.

Kao u slučaju Šenberga, ili bilo kojeg drugog savremenog umetnika, to prihvatanje ne mora biti univerzalno. Možda to prihvatanje od zajednice zaista ne bi došlo još dugi niz godina – jer, ponekad se kreativnost generacijama pogrešno odbacuje. Ali, ukoliko neka zajednica na kraju ne prihvati inovaciju, onda i nema smisla govoriti o toj zajednici kao o kreativnoj.

Napredak u veštačkoj inteligenciji doveo je do brojnih nagađanja, naime, o tome da će ljudska bića uskoro biti zamenjena mašinama u svim domenima, uključujući i oblast kreativnosti. Ray Kurzweill, futurista, predviđa da ćemo do 2029. stvoriti AI koji može proći kao prosečno obrazovano ljudsko biće. Oksfordski filozof Nik Bostrom nešto je oprezniji; Ne navodi datum, ali predlaže da filozofi i matematičari odgode svoj rad na osnovnim naučnim pitanjima do trenutka punog razvoja „superinteligencije“ naših naslednika, one inteligencije definisane kao „intelekt koji u velikoj meri premašuje kognitivne performanse ljudi u praktično svim domenima (njihovih) interesa“.

Obojica veruju da će jednom, kada se inteligencija na ljudskom nivou proizvede u mašinama, doći do naleta napretka – ono što Kurcvajl naziva „singularnošću“, a Bostrom „eksplozijom inteligencije“ – u kojoj će nas mašine vrlo brzo zameniti krupnim merama u svakom domenu. To će se dogoditi, tvrde oni, jer je nadljudsko dostignuće isto što i obično ljudsko postignuće, osim što se sva relevantna izračunavanja izvode mnogo brže, u onome što Bostrom naziva „hitrom, naprednom superinteligencijom“.

Pa, šta je u tom slučaju sa najvišim nivoom ljudskih dostignuća – kreativnim inovacijama? Da li će naše najkreativnije umetnike i mislioce masovno nadmašiti mašine?

Ne.

Ljudsko kreativno dostignuće, zbog načina na koji je ugrađeno u društvo, neće podleći napretku veštačke inteligencije. Reći drugačije značilo bi pogrešno razumeti ono što su u krajnjem zbiru ljudi, kao vrsta, a i naša kreativnost.

Ova tvrdnja nije apsolutna: ona zavisi od normi kojima dozvoljavamo da upravljaju našom kulturom, kao i naših očekivanja od tehnologije. Ljudska bića su u prošlosti pripisivala veliku moć i genijalnost čak i beživotnim totemima. Sasvim je moguće da ćemo doći do tačke kada ćemo se prema veštački inteligentnim mašinama odnositi kao toliko nadmoćnima u odnosu na nas da ćemo im prirodno pripisivati kreativnost. Ako se to dogodi, to neće biti zato što su nas mašine nadmašile. Biće to zato što ćemo sami sebe umanjiti, sebe surovo kritikovati i ocrniti.

Ljudsko kreativno dostignuće, zbog načina na koji je usađeno u društveno tkivo, neće podleći napretku veštačke inteligencije.

Ovde, takođe, prvenstveno govorim o napretku mašina kakav je nedavno viđen, sa trenutno aktuelnom paradigmom dubokog učenja kao i njenovih računarskih „naslednika“. Druge paradigme, modeli i primeri su u prošlosti upravljali istraživanjima veštačke inteligencije. Oni već nisu uspeli da ispune svoje obećanje. Još neke druge paradigme mogu se uspostaviti u budućnosti, ali ako pretpostavimo da će neka zamišljena buduća umetnička inteligencija – čije karakteristike ne možemo smisleno opisati – postići čudesne stvari, onda je to stvaranje mita, a ne obrazloženi argument o mogućnostima tehnologije.

Kreativno dostignuće različito deluje u različitim domenima. Ovde ne mogu da ponudim potpunu taksonomiju različitih vrsta kreativnosti, pa ću, kako bih naglasio, skicirati argument koji uključuje tri sasvim različita primera: muziku, igre i matematiku.

Muzika za moje uši

Nao Tokui & AI: Imaginary Landscape (2018): Tokui koristi algoritam mašinskog učenja za stvaranje panoramskih slika pronađenih u Google Street View, koje potom dopunjava „zvučnim pejzažima“ kreiranim u veštačkim neuronskim mrežama

Možemo li zamisliti mašinu takvih nadljudski kreativnih sposobnosti da dovodi do promena u onome što shvatamo kao muziku, kao što je to činio Šenberg?

To je ono za šta tvrdim da mašina ne može doseći i postići. Da vidimo zašto.

Kompjuterski sistemi za muzičku kompoziciju postoje već duže vreme. Kurcvajl je 1965. godine, sa 17 godina, koristio preteču sistema za prepoznavanje obrazaca koji danas karakterišu algoritme dubokog učenja, programirajući računar za komponovanje prepoznatljive muzike. Danas se koriste varijante ove tehnike. Algoritmi dubokog učenja mogli su, na primer, da prihvate gomilu Bahovih korala i komponuju muziku toliko karakterističnu za Bahov stil da čak i stručnjake zavarava do stepena kada misle da se radi o nekoj od Bahovih originalnih kompozicija. Ovo je mimikrija. To je ono što umetnik radi kao šegrt na praksi: kopira i usavršava stil drugih umesto da radi autentičnim, svojim originalnim glasom. Nije vrsta muzičke kreativnosti koju povezujemo sa Bahom, niti ima veze sa Šenbergovom radikalnom inovacijom.

Pa, šta u tom slučaju kažemo? Da li može postojati mašina koja, poput Šenberga, izmišlja sasvim novi način muziciranja? Naravno, možemo zamisliti, pa čak i napraviti takvu mašinu. S obzirom na algoritam koji modifikuje sopstvena pravila kompozicije, mogli bismo lako proizvesti mašinu koja čini muziku toliko različitom od one koju danas smatramo dobrom muzikom, kao što je to tada činio Šenberg.

Ali, od ove tačke stvari postaju nešto komplikovanije.

Šenberga smatramo kreativcem i inovatorom ne samo zato što je uspeo da stvori novi način komponovanja muzike, već zato što su ljudi u njemu mogli da vide viziju kakav bi svet trebalo da bude. Šenbergova vizija podrazumevala je „rezervni“, čisti, efikasni minimalizam modernosti. Njegova inovacija nije bila samo pronalaženje novog algoritma za komponovanje muzike; trebalo je pronaći način razmišljanja o tome šta je muzika koja joj omogućava da komunicira, sa zahtevima savremenosti.

Neki bi mogli da tvrde da sam lestvicu podigao previsoko. Da li to tvrdim, pitaće oni, da je mašini potreban neki mistični, nemerljivi osećaj onoga što je društveno neophodno da bi se računalo kao kreativno? Nisam – iz dva razloga.

Prvo, setite se da je predlaganjem nove, matematičke tehnike za muzičku kompoziciju, Šenberg promenio naše razumevanje muzike. Samo kreativnost ove vrste koja prkosi tradiciji zahteva neku vrstu društvene osetljivosti. Da slušaoci nisu njegovu tehniku shvatili kao ostvarivanje anti-tradicionalizma u srcu radikalne modernosti rođene u Beču s početka 20. veka, možda je ne bismo „čuli“ kao nešto estetski vredno. Poenta je ovde da radikalna kreativnost nije „ubrzana“ verzija svakodnevne kreativnosti. Šenbergovo postignuće nije brža ili bolja verzija one vrste kreativnosti koju je pokazao Oscar Strauss, ili neki drugi prosečni kompozitor: ona je suštinski različita po prirodi.

Drugo, moj argument nije da reakcija kreativca na društvenu potrebu mora biti svesna dela koje bi zadovoljilo genijalne standarde. Umesto toga, tvrdim da na taj način moramo biti u stanju da protumačimo delo. Bila bi greška tumačiti sastav mašine kao deo takve vizije sveta. Argument za ovo je jednostavan.

Tvrdnje poput Kurcvajlove – da mašine mogu dostići inteligenciju na ljudskom nivou – pretpostavljaju da je imati ljudski um samo ljudski mozak koji sledi neki skup računarskih algoritama – pogled je koji se naziva „kompjuterizam“ (uma). Ali, iako algoritmi mogu imati moralne implikacije, oni sami nisu moralni agensi, provodnici i posrednici. Majmuna iza pisaće mašine koji slučajno otkuca „Otelo“ ne možemo uvrstiti u veličanstvenog kreativnog dramskog pisca. A ukoliko je u proizvodu veličina, to je samo „nezgoda“. Proizvod mašine možemo videti kao sjajan, ali ako znamo da je on samo ishod nekog proizvoljnog čina ili algoritamskog formalizma, ne možemo ga prihvatiti kao izraz vizije za dobrobit čoveka.

Iz tog razloga, čini mi se da se ništa osim drugog čoveka ne može pravilno razumeti kao istinski kreativni umetnik. Možda će AI jednog dana ići dalje od svog računarskog formalizma, ali to bi zahtevalo skok koji je trenutno nezamisliv. Ne bismo tražili samo nove algoritme ili postupke koji simuliraju ljudsku aktivnost; tražili bismo nove stvari; građu, činjenice, ideje, informacije, koji su osnova čovekovog bića.

Jedan duplikat čovekovog  molekula bi na odgovarajući način mogao biti čovek. Mi već, međutim, imamo način da proizvedemo takvo biće: za to nam je potrebno oko devet meseci. Trenutno, mašina može da uradi samo nešto daleko manje zanimljivo od onoga što je čovek sposoban da postigne. Na primer, može da stvori muziku u Bahovom stilu – možda čak i muziku za koju neki stručnjaci misle da je bolja od Bahove. Ipak, to je samo zato što se njegova muzika može ocenjivati prema već postojećem standardu. Ono što mašina ne može je da donese promene u našim standardima za ocenjivanje kvaliteta muzike ili razumevanja šta muzika jeste ili šta ona nije.

Ovo ne znači da se negira da kreativni umetnici koriste sva sredstva kojima raspolažu i da ta sredstva (danas su sredstva zamenjena rečju „alati“) oblikuju vrstu umetnosti koju stvaraju. Truba je pomogla Dejvisu i Kolmenu da ostvare svoju kreativnost. Ali truba, sama po sebi, nije kreativna. Algoritmi veštačke inteligencije više liče na muzičke instrumente nego na ljude. Taryn Southern, bivša takmičarka iz ’Američkog idola’ je nedavno objavila album na kojem su udaraljke, melodije i akordi generisani algoritamski, mada je ona pisala tekstove i više puta doterivala algoritam instrumentacije, sve dok ovaj nije doneo željene rezultate. Početkom devedesetih, Dejvi Bouvi je učinio obrnuto: napisao je muziku i uz to koristio Mac aplikaciju pod nazivom Verbalizer da bi “pseudo slučajno“ rekombinovao rečenice u tekstovima pesama. Baš kao i prethodni alati (sredstva) muzičke industrije – od uređaja za snimanje i sintisajzera, do semplera i loopera – novi AI alati rade stimulišući i kanališući kreativne sposobnosti umetnika (i ujedno odražavajući ograničenja tih sposobnosti).

Igre bez granica

Mnogo je napisano o dostignućima sistema dubokog učenja – sistema koji su danas najbolji ’Go’ igrači na svetu. Računarski  program ’AlphaGo’ i njegove varijante su neka vrsta potvrde da je stvoren potpuno novi način igranja ove stare igre. Naučili su stručnjake da brojni potezi pri otvaranju – za koje se dugo mislilo da su nepromišljeni – mogu dovesti do pobede. Program se igra u stilu koji stručnjaci opisuju kao čudan i (ljudskom načinu shvatanja) stran. „Programi za igranje igara su ono kako zamišljam igre iz daleke budućnosti“, izjavio je Shi Yue, vrhunski igrač, govoreći o svom doživljaju programa AlphaGo. Čini se da je algoritam zaista kreativan.

U nekom značajnijem smislu i aspektu on to i jeste. Igranje igara se, međutim, razlikuje od komponovanja muzike ili pisanja romana: u igrama postoji objektivno merilo uspeha. Znamo da imamo šta da naučimo od AlphaGo-a jer vidimo da pobeđuje.

Ali to je takođe ono zbog čega Go i obitava u „domenu igračaka“ (toy domain), jednim uprošćenim slučajem, koji nam na ograničeni i oskudni način govori o raznim stvarima ovoga sveta.

En Ridler & AI: „Pad kuće Ašer“ (2017)

Sloka gore: dvanaestominutna animacija zasnovana na nemom filmu Votsona i Vebera iz 1928. godine: Ridlerova je stvorila fotografije koristeći tri odvojene neuronske mreže: jednu obučenu na njenim crtežima, drugu na crtežima napravljenim od rezultata prve mreže, i treću treniranu na crtežima napravljenim od rezultata druge.

Najosnovnija vrsta ljudske kreativnosti menja naše razumevanje sebe, jer menja shvatanje onoga što smatramo dobrim. Tome nasuprot, u vezi igre Go, priroda dobrote jednostavno nije na radaru mašinskih programa: Strategija igre je dobra onda i samo ako mašina pobedi. A ljudski život, opšte uzev, nema ovu osobinu: ne postoji objektivno merilo uspeha u najvišim oblastima postignuća. Svakako ne u umetnosti, književnosti, muzici, filozofiji ili politici. A takođe, u tom pogledu, ni u razvoju novih tehnologija.

U raznim domenima igračaka, mašine će možda moći da nas nauče nešto, nečemu, o određenoj, vrlo ograničenoj, formi kreativnosti. Ipak, pravila ovog domena su unapred formirana; sistem može uspeti samo zato što nauči da igra dobro u okviru ovih ograničenja. Ljudska kultura i ljudsko postojanje su daleko zanimljiviji od ovoga. Postoje norme kako se ljudska bića ponašaju, naravno. Ali kreativnost u pravom smislu je sposobnost promene tih normi u nekom važnom ljudskom domenu. Uspeh u domenima igračaka nije pokazatelj da je kreativnost ove temeljnije, fundamentalnije vrste dostižna.

Kao nokaut

Skeptik bi mogao tvrditi da argument deluje samo zato što ja suprotstavljam igre umetničkom geniju. Postoje i druge paradigme kreativnosti u naučnom i matematičkom području. U ovim carstvima, pitanje nije uvezano sa vizijom sveta. Radi se o tome kako stvari, zapravo, stoje.

Da li bi mašina jednog dana mogla izneti matematičke dokaze toliko daleko ispred nas, toliko napredne da jednostavno moramo odstupiti i prikloniti se njenom kreativnom geniju?

Ne.

Računari su već pomogli u značajnim matematičkim dostignućima. Ali njihovi doprinosi nisu bili naročito kreativni. Uzmimo prvu veliku teoremu dokazanu pomoću računara: teoremu o četiri boje, koja kaže da bilo koja ravna mapa može biti obojena sa najviše četiri boje na takav način da se nijedna susedna „država“ ne dodiruje sa nekom koja je iste boje (ovo se, takođe, odnosi i na zemlje na sferičnoj površini zemaljske kugle, a ne samo na dvodimenzionalnoj predstavi).

Pre skoro pola veka, 1976. godine, Keneth Apel i Volfgang Haken s Univerziteta u Ilinoisu objavili su kompjuterom potpomognuti dokaz ove teoreme. Računar je izvršio milijarde proračuna, proveravajući hiljade različitih vrsta mapa – toliko da je ljudima bilo (i ostalo) logistički neizvodljivo da provere da li je svaka mogućnost u skladu sa “pogledom” i “perspektivom” računara. Od tada, kompjuteri rutinski pomažu u širokom spektru novih dokaza koje čovek iznosi u obliku premisa i teorija.

AI & Tom Vajt: Električni ventilator (2018). Umetnik je koristio ’perceptivne mašine’, algoritme koji destiluju podatke prikupljene na hiljadama fotografija uobičajenih predmeta, sa ciljem njihove sinteze u apstraktne oblike. Dobijene rezultate zatim testira i dorađuje, sve dok ih sistem ne prepozna.

Međutim, superračunar ne radi ništa kreativno dok proverava ogroman broj slučajeva. Umesto toga, radi nešto dosadno u nepojamno mnogo navrata. Ovo se čini gotovo suprotnim od kreativnosti. Štaviše, toliko je daleko od vrste razumevanja za koje obično mislimo da bi, kao dokaz, recimo, poput matematičkog, trebalo da ponudi: jer, računar u tolikoj meri dosadno rutinski „algoritmuje“ da neki stručnjaci ove „mašinske strategije“ proistekle iz računarskih operacija uopšte ne smatraju (validnim) matematičkim dokazima. Filozof matematike i nauke Thomas Tymoczko je tvrdio da, ukoliko ne možemo čak ni da verifikujemo da li je dokaz čovekove postavke tačan i utemeljen, onda sve što zaista činimo jeste ukazivanje poverenja računsko-računarskim procesima, koji su skloni greškama.

Iako pretpostavimo da treba da verujemo takvim (iz algoritma proisteklim) rezultatima, međutim, dokazi dobijeni uz pomoć računara su, po analogiji, nešto poput komponovanja muzike uz pomoć računara. Ako nam daju vredan „proizvod“, odnosno, „konačni ishod“ (tzv. umetničko delo), to je prevashodno zbog doprinosa čoveka. Ipak, neki stručnjaci tvrde da će veštačka inteligencija moći da postigne i više od ovoga. Pretpostavimo, onda, da posedujemo krajnju, ultimativnu opciju: samostalnu mašinu koja sve nove teoreme dokazuje sama.

Da li bi jednog dana, kako tvrde Kurcvajl i Bostrom, neka ovakva mašina mogla u ogromnoj meri nadmašivati čovekovu matematičku kreativnost,? Pretpostavimo, na primer, da AI donosi rešenje nekog izuzetno važnog i teškog otvorenog problema u matematici.

Sposobnost istinske kreativnosti, one vrste kreativnosti koja ažurira, nadograđuje i usavršava naše (po prirodi ljudske) razumevanje prirode bića, u osnovi je onoga što bi ljudskost i trebalo biti.

Postoje dve mogućnosti. Prva je da je dokaz izuzetno pametan i kada stručnjaci u toj oblasti prođu kroz njega, otkriju da je tačan. U ovom slučaju, AI koja je otkrila dokaz biće nagrađena aplauzom; Čak se i sama mašina može smatrati kreativnim matematičarem. Ali, takva mašina ne bi bila dokaz singularnosti; ne bi nas toliko nadmašila u kreativnosti da, navodno, čak ne bismo mogli ni da razumemo šta je to što radi. Čak i da poseduje takvu vrstu kreativnosti na ljudskom nivou, to je ne bi neizbežno uvelo u carstvo onkog nadljudskog.

Neki matematičari su poput muzičkih virtuoza: Odlikuje ih savršeno vladanje nečim unutar već postojećeg idioma. Ali geniji kao što su Srinivāsa Aiyangār Rāmānujan, Emmy Noether ili Alexander Grothendieck su verovatno preoblikovali matematiku baš kao što je Schoenberg preoblikovao muziku. Njihova dostignuća nisu bila oličena samo u dokazivanju dugogodišnjih hipoteza, već u novim i neočekivanim oblicima rezonovanja, koji su delovali ne samo snagom njihove logike već i sposobnošću da druge matematičare argumentovano ubede u značaj njihovih inovacija. Zamišljeni AI koji donosi „pametni dokaz problema“ koji je dugo zbunjivao matematičare srodan je računarskom programu AlphaGo i njegovim varijantama: impresivan, ali nimalo nalik Šenbergu.

To nas dovodi do druge mogućnosti. Pretpostavimo da je najbolji i najsjajniji algoritam za duboko učenje labav, pa nakon izvesnog vremena kaže: „Našao sam dokaz fundamentalno nove teoreme, ali je isuviše komplikovan da bi ga razumeli i vaši najbolji matematičari.“

Ovo, zapravo, nije moguće. Dokaz koji ne mogu da razumeju ni najbolji matematičari se, zapravo, ne računa kao dokaz. Dokazivanje nečega podrazumeva da to dokazujete nekome. Kao što muzičar(ka) mora nagovoriti svoju publiku da prihvati njegov/njen estetski koncept dobre muzike, tako i matematičar mora nagovoriti druge matematičare da postoje dobri razlozi da poveruju u takvo, inovativno-kreativno viđenje istine. Da bi se neki matematički podatak smatrao valjanim dokazom, neka tvrdnja mora biti razumljiva i podržana od strane nekog nezavisnog skupa stručnjaka koji su u dobroj poziciji da je razumeju. Ako stručnjaci – koji bi trebalo da su sposobni da razumeju dokaz – to nisu u stanju, onda naučna zajednica odbija da ovaj novi način prihvati kao dokaz.

Iz tog razloga, matematika više liči na muziku nego što bi se moglo i pomisliti. Mašina nas ne bi mogla uveliko nadmašivati u kreativnosti, jer bi njeno postignuće ili bilo razumljivo – jer nas, u tom slučaju, ne bi ubedljivo nadmašilo – ili pak ne bi bilo razumljivo – jer u tom slučaju ne bismo mogli da na njen “opus” gledamo kao ostvarenje bilo kakvog kreativnog napretka.

Oko posmatrača

Inženjerstvo i primenjena nauka su, na neki način, negde između ovih primera. Postoji nešto poput objektivnog, spoljnog merila uspeha. Ne možete „pobediti“ u izgradnji mostova ili otkrivanju novih lekova onako kako možete u šahu, ali se može videti da li most pada ili je virus eliminisan. Ovi objektivni kriterijumi stupaju na snagu tek kad je domen prilično dobro preciziran: dolazi do jakih, laganih materijala, recimo, ili lekova koji uspešno suzbijaju određene bolesti. AI bi mogao pomoći u otkrivanju lekova tako što bi, u stvari, uradio isto što i AI koji je sastavio ono što je zvučalo kao dobro izvedena Bahova kantata, ili bi smislio briljantnu strategiju za Go. Poput mikroskopa, teleskopa ili kalkulatora, takav AI se pravilno shvata kao sredstvo koje omogućava čovekova otkrića – a ne kao autonomni kreativni agent „mašinskog porekla“.

Ovde vredi razmisliti o specijalnoj teoriji relativnosti. Alberta Ajnštajna pamte kao „otkrivača“ fizičkog relativiteta – ali ne zato što je prvi smislio jednačine koje bolje opisuju strukturu prostora i vremena. Džordž Ficdžerald, Hendrik Lorenc i Anri Poenkare, između ostalih, zapisali su te jednačine pre Ajnštajna. Hvaljen je i ustoličen kao otkrivač teorije jer je originalno, izvanredno i suštinski istinito razumeo šta te jednačine znače, a i bio je u stanju da to razumevanje prenese drugima.

Da bi se mašina mogla baviti fizikom koja je u bilo kom smislu uporediva s Ajnštajnovom kreativnošću, ona mora da je u stanju da druge fizičare ubedi u vrednost svojih ideja – bar toliko dobro koliko je i on sam to učinio. Što će reći, morali bismo biti u mogućnosti da prihvatimo njene „predloge“, sa ciljem da nam prenesu valjanost njihovog sopstvenog izvođenja. Ako bi takva mašina ikada i nastala, kao u alegorijskoj priči o Pinokiju, morali bismo da se prema njoj odnosimo kao prema čoveku. To znači, između ostalog, da bismo „tome“, toj mašini, morali da pripišemo ne samo inteligenciju već i ono dostojanstvo i moralnu vrednost koje odgovaraju ljudskim bićima. Čini mi se da smo daleko od ovog scenarija i nema razloga da mislimo da će nas trenutna računarska paradigma veštačke inteligencije – u svom obliku dubokog učenja ili bilo kojem drugom – ikada približiti njemu.

Kreativnost je jedna od glavnih karakteristika ljudskih bića. Sposobnost istinske kreativnosti, ona vrsta kreativnosti koja konstantno poboljšava i nadograđuje naše razumevanje prirode bića, koja menja način na koji shvatamo šta je to biti lep, ili dobar, ili istinit – ta je sposobnost osnova onoga što čovek treba biti. Ova vrsta kreativnosti, međutim, zavisi od našeg vrednosnog suda i brižnost za nju kao takvu (mašina ne poseduje takvu potrebu-instinkt). Kao što je pisac Brian Christian na jednom mestu istakao, ljudska bića se sve manje ponašaju poput bića koja bi trebalo da kreativnost vrednuju kao jednu od svojih najuzvišenijih mogućnosti, već se, tome nasuprot, pre ponašaju kao same mašine.

Koliko ljudi danas ima poslove koji od njih zahtevaju praćenje unapred određenih skripti za njihove razgovore? Koliko je u ovoj ispraznoj šaradi malo od onoga što nam je poznato kao stvaran, autentičan, kreativan i otvoren ljudski razgovor? Koliko je to, ta „konverzacija“, taj „razgovor“ umesto toga, zapravo, samo jedna vrsta poštovanja pravila onoga što je mašina u stanju da uradi? A koliko je nas – ukoliko dopuštamo da budemo uvučeni u ovakva „izvođenja scenarija“ – takođe ispražnjeno od smisla, suštine ljudskosti? Koliko vremena svakog dana dozvoljavamo sebi da budemo ispunjeni efikasnim mašinskim aktivnostima – popunjavanjem kompjuterizovanih obrazaca i upitnika, odgovaranjem na najraznovrsnije „mamce“, koji rade na naše najprizemnije impulse nalik životinjskim – „igrajući“ s njima, recimo, igrice – te unapred smišljene scenarije – igrajući igrice osmiljene radi „optimizacije naše zavisnosti“ reagovanja na sve ovo (mašinske, algoritamske mamce)?

U opasnosti smo od ove zabune i u nekim od najdubljih domena ljudskih dostignuća. Ukoliko sebi dozvolimo da kažemo da su mašinski dokazi koje ne možemo razumeti istinski „dokazi“, na primer, ustupajući društveni autoritet mašinama – tretiraćemo dostignuća matematike kao da uopšte ne zahtevaju ljudsko razumevanje. Potući ćemo jednu od naših najviših formi kreativnosti i inteligencije, i svesti ih na komadić binarnih informacija: da ili ne. Jedinica ili nula.

AI & M.C. Escher: Ether A2 

Čak i da posedujemo te informacije, one bi nam bile od male vrednosti bez izvesnog razumevanja razloga koji su u osnovi. Ne smemo izgubiti iz vida suštinski karakter rezonovanja, koji je u osnovi onoga što je matematika po sebi.

Tako je i sa umetnošću, muzikom, filozofijom i književnošću. Ukoliko sebi dopustimo da se okliznemo, pa počnemo da mašinsku „kreativnost“ tretiramo kao zamenu za svoju, tada će nam mašine zaista izgledati neshvatljivo superiorne. To će se, međutim, dogoditi zato što ćemo izgubiti nit vodilju o osnovnoj ulozi koju kreativnost igra u postojanju čoveka i ljudskosti.

Sean Dorrance Kelly predaje filozofiju na Harvardu i koautor je bestselera „Sjaj svih stvari“ (All Things Shining).

 

MIT Review

 

Iz radijusa:

AIArtists.org, The world’s largest community of artists exploring the impact of AI on art & society

Artificial Intelligence and the Arts: Toward Computational Creativity

The Past, Present, and Future of AI Art

Next Level Art and the Future of Work and Leisure

Five artists who show art’s important relationship to AI

The Rise of AI Art—and What It Means for Human Creativity

Art made by AI is selling for thousands – is it any good?

If an AI creates a work of art, who owns the rights to it?

We’ve been warned about AI and music for over 50 years, but no one’s prepared

AI and music: will we be slaves to the algorithm?

The Relationship Between Art and AI

AI Is Blurring the Definition of Artist

How AI-generated music is changing the way hits are made

AI composers create music for video games

Music and Artificial Intelligence

12 songs created by AI

AI’s Growing Role in Musical Composition

A Retrospective of AI + Music, How AI has shaped music creation and the industry

Future Prooff: AI and music

Will Artificial Intelligence Replace Human Musicians?The machines are coming, but they seem to be coming to help us create better music

AI Economist: veštačka inteligencija za usavršavanje poreskih modela

Simulator ekonomskih trendova zasnovan na veštačkoj inteligenciji, AI Economist u stanju je da nakon milion izvršenih simulacija ekonomskih trendova sačini model jedne pravednije poreske politike.

Duboko učenje (Deep RL, ili, DL, „temeljito učenje“; Deep Reinforcement Learning) je tokom proteklih godina obučilo i osposobilo veštačku inteligenciju da nadmaši čoveka u nekim složenim igrama, mozgalicama kao što su Go ili StarCraft. Da li bi takav princip primene veštačke inteligencije mogao da uradi i bolji posao u, recimo, vođenju nacionalne i globalne ekonomije?

Nejednakost prihoda jedan je od najvećih problema ekonomije. Jedno od najefikasnijih sredstava koje političari moraju imati je način da se postigne što uravnoteženije oporezivanje: vlade prikupljaju novac od građana u skladu s onim što oni zarađuju i taj novac redistribuiraju direktno, putem socijalnih šema ili indirektno, koristeći ga za plaćanje troškova javnih projekata. Ali, iako više oporezivanja može dovesti do veće jednakosti među građanima u društvu, previše oporezivanja bi ih moglo obeshrabriti da rade ili ih motivisati da iznalaze načine izbegavanja plaćanja – što, automatski, po logici, smanjuje i ukupni iznos u budžetskoj kasi.

Postići što racionalniji balans u oporezivanju nije lako. Ekonomisti se obično oslanjaju na pretpostavke koje je teško potvrditi. Ponašanje ljudi vezano za „matematiku para“ odnosno ekonomiju, kako ličnu tako i onu sistemski uspostavljenu je složeno, a prikupljanje podataka i formiranje „info-inputa“ o tome je teško. Ekonomisti su proveli decenije istražujući načine kako da što bolje osmisle poreske politike, ali je ona i dalje, sve do danas, ostala otvoren problem: kako utisnuti što je moguće veću racionalnost u oporezivanju, i na čemu bi taj zdravorazumski pristup trebalo da se zasniva?

Naučnici američke kompanije za poslovnu tehnologiju Salesforce misle da bi veštačka inteligencija mogla pomoći pri rešavanju najboljeg i najpravičnijeg oporezivanja građana i firmi u odnosu na njihove prihode. Vođeni Ričardom Sočerom, tim ove firme je razvio sistem koji se zove ‘AI Economist’ koji koristi duboko učenje – istu vrstu tehnike koja stoji iza ’AlphaGo’ i ’AlphaZero’ kompanije DeepMind – da identifikuje optimalne poreske politike za simuliranu ekonomiju. Alat je još uvek relativno jednostavan (ne postoji način da obuhvata sve složenosti stvarnog sveta ili ljudskog ponašanja), ali je obećavajući prvi korak ka procenjivanju politika na potpuno novi način. „Bilo bi neverovatno učiniti poresku politiku manje ispolitizovanom a sa što više realnih podataka na osnovu kojih izvodi svoje proračune,“ kaže član tima Alex Trott.

U jednom od početnih rezultata, ova ekonomska AI je pronašla politiku koja je, s aspekta maksimuma kako produktivnosti tako i jednakosti dohotka, bila 16% pravednija od najsavremenijeg progresivnog poreskog okvira koji su proučavali ekonomisti iz akademskih krugova. Poboljšanje u odnosu na trenutnu američku politiku bilo je još veće. “Mislim da je to potpuno zanimljiva ideja”, kaže Blejk Lebaron s Univerziteta Brendajs (Blake LeBaron, Brandeis univ., Massachusetts), koji je AI neuronske mreže koristio za modeliranje finansijskih tržišta.

U jednoj simulaciji, četiri osobe zaposlene na ovom istraživanju prihvatile su da ih nadgleda veštačka inteligencija sazdana upravo po njihovim modelima dubokog učenja; upregli su svoju ekonomsku AI dajući joj svoje podatke, potrebne veštačkoj inteligenciji za određivanje njihove poreske osnovice. Oni komuniciraju s dvodimenzionalnim svetom, prikupljajući, recimo, drvo i kamen, ili trgujući tim resursima sa drugima, ili ih koriste za izgradnju kuća, što im donosi novac. Radnici poseduju različite nivoe veština, što ih dovodi do specijalizacije u određenim oblastima. Radnici s nižom kvalifikacijom uče da rade bolje ako prikupljaju resurse, a oni sa višom kvalifikacijom uče da rade bolje ako kupe sredstva za izgradnju kuća. Na kraju svake simulirane godine, svi radnici oporezuju se po stopi koju je odredio kreator politike pod kontrolom AI, koristeći se svojim algoritmom dubokog učenja. Cilj kreatora politike je da poveća i produktivnost i prihode svih radnika. Tako se AI, shodno tome, približavaju optimalnom ponašanju ponavljanjem simulacije do, recimo – milion puta.

Oba modela dubokog učenja (DL) počinju od nule, bez prethodnog znanja o ekonomskoj teoriji, i uče kako da dalje postupaju i funcionišu putem pokušaja i pogrešaka – na potpuno isti način na koji veštačka inteligencija kompanije ‘DeepMind’’ uči, bez ljudskog doprinosa, recimo, da igra Go ili StarCraft na, skromno govoreći, nadljudskim nivoima.

Možete li puno naučiti od samo četiri radnika iz AI? Teoretski, da, jer jednostavne interakcije između nekolicine ispitanika ubrzo dovode do vrlo složenih modela ponašanja. (Na primer, igra ‘Go’ i dalje obuhvata samo dva igrača). I mada je tako, svi uključeni u projekat slažu se da će povećanje broja radnika koje će AI ispitivati u simulaciji biti od suštinske važnosti – ako će ovaj alat za analizu većeg broja ispitanika uspeti da modeluje realne scenarije.

Poigravanje sistemom

Od ključne je važnosti primena „duple doze“ veštačke inteligencije: AI neuronske mreže su i ranije korišćene pri kontroli ispitanika u simuliranim ekonomijama. Ali, stvaranje AI za donosioce politika. pa i za poreske politike, takođe vodi ka modelu u kojem se radnici i odlučioci međusobno neprekidno prilagođavaju jedni drugima, a shodno svojim postupcima. Ovo dinamičko okruženje bilo je izazov za modele dubokog učenja primenjenog na ekonomiju i poreske modele, s obzirom da strategija naučena u okviru jedne poreske politike možda neće funkcionisati tako dobro u interakciji s nekom drugom vrstom poreske politike. Ovo je, međutim, takođe značilo da je AI iznašao načina da izigra sistem. Na primer, neki radnici su naučili da izbegavaju porez smanjujući svoju produktivnost da bi se kvalifikovali za niži poreski razred, da bi je zatim ponovo povećali (produktivnost). Ekipa kompanije Salesforce kaže da ovo uzimanje i davanje uspostavljeni između radnika i kreatora politika dovodi do simulacije ekonomskog stanja i poreskog modela na način realističniji od bilo čega postignutog prethodnim modelima, gde su poreske politike obično fiksne i ne variraju (a što već po sebi nije realno stanje stvari).

Poreska politika koju je smislio AI Economist pomalo je neobična. Za razliku od većine postojećih politika, koje su ili progresivne (tj. oni koji više zarađuju bivaju i više oporezovani) ili regresivno (oni koji više zarađuju se oporezuju manje), poreska politika stvorena veštačkom inteligencijom spojila je aspekte oba, primenjujući najviše poreske stope na bogate i siromašne, dok su najniže poreske stope primenjene na radnicima sa srednjim primanjima. Kao i mnoga rešenja koja AI smisle – poput nekih poteza AlphaZero-a za pobedu u igrama – rezultat se čini kontraintutivan, a ne kao nešto što je čovekov um prethodno zamislio. Pa ipak, njegov uticaj na ekonomiju doveo je do manjeg jaza između bogatih i siromašnih.

U nastojanju da uoče hoće li poreska politika nastala uz pomoć veštačke inteligencije slično uticati i na ljudsko ponašanje, tim je testirao više od 100 radnika angažovanih preko Amazonovog “Mehaničkog Turčina” (Mechanical Turk), od koga je u simulaciji zatraženo da preuzme kontrolu nad radnicima (Naziv je potekao od mehaničke igračke-automatona iz 18. veka za simulaciju igranja šaha – a zapravo lutke iza koje se nalazio čovek koji je povlačio poteze). Otkrili su da je poreska politika proistekla iz veštačke inteligencije ohrabrila ljude da „igraju“ i ponašaju se na gotovo isti način kao i AI, sugeriršući – barem u principu – da se ’AI Economist’ može koristiti za uticaj na stvarnu ekonomsku aktivnost.

Beskrajno podešavanje

Još jedna prednost ekonomske simulacije pokretane veštačkom inteligencijom se ogleda u mogućnosti prilagođavanja parametara kako biste istražili raznolike scenarije. Na primer, uticaj pandemije bi se mogao stvoriti dodavanjem ograničenja kao što su međusobno distanciranje i ograničeni pristup resursima, ili pak uklanjanjem ljudi iz pula radne snage. „Teško je smisliti optimalne poreske teorije zasnovane na prošlosti i primerima iz ekonomske istorije ukoliko budućnost izgleda toliko drugačije od onoga što su do pre neki dan bili modeli predviđanja“, kaže Sočer.

Sposobnost simulacije da menja model je veliki plus, kaže LeBaron: „Prilično je zanimljivo videti radnike koji se prilagođavaju poreskom zakonu“. Ovo je zaobišlo jednu od inače krupnih kritika na račun već postojećih poreskih modela, u kojima je ponašanje obično fiksno, odnosno, nepromenljivo, kaže on.

Glavna rezervisanost LeBarona prema ’AI Ekonomisti’ odnosi se na mali broj ispitanika na kojima je ovaj alat primenjen. „Postoje oni koji tvrde da možete steći dublji intelektualni uvid sa samo nekoliko ispitanika“, kaže on. “A nisam jedan od njih.” On bi želeo da vidi kako ishode simulacije sprovedene na, recimo, stotinjak radnika – što je takođe cifra kojoj teži tim kompanije Salesforce.

LeBaron, međutim, veruje da bi se ovaj AI alat već mogao koristiti za proveru postojećih ekonomskih modela: „Da sam ja kreator politika, pokrenuo bih ovu ‘stvar’ čisto da vidim šta će ‘reći’ o već postojecim modelima“. Ako se AI Economist ne bi složio sa drugim, tradicionalnim „ljudskim“ modelima, to bi mogao biti znak da tim drugim modelima nešto nedostaje, kaže on.

Dejvid Parks, harvardski informatičar i ekonomista koji je sarađivao sa timom iz firme Salesforce je takođe optimističan. On se slaže s LeBaronom da im je potrebno znatno veći broj ispitanika. Ali, nakon što su to primenili nekoliko dodatnih karakteristika kao što je dodavanje kompanija simulaciji, Parks predviđa da će moći da ponovi postojeće teorijske rezultate. “Tada ishod AI simulacije odmah postaje koristan i upotrebljiv”, kaže on.

Američki profesor Doin Farmer (Doyne Farmer), koji na Oksfordu predaje ekono-fiziku i kompleksne matematičke sisteme u ekonomiji je, međutim, nešto malo manje ubeđen u valjanost budućih ishoda ekonomskog AI simulatora. Iako pozdravlja ukrštanje i primenu dubokog učenja sa igara na oblast ekonomije – „Postavlja se pitanje da li možete istraživati politike na isti način na koji AlphaZero igra apstraktnu stratešku igru kao što je Go“. On smatra da će proći još neko vreme pre nego što ovaj AI alat postane zaista koristan u ekonomskim predviđanjima i modeliranju. „Stvarni svet je, ipak, previše komplikovan“, kaže Farmer.

Tim iz Salesforce-a prihvata činjenicu da će neki ekonomisti biti, tek vremenom, i postepeno, ubeđivani u prihvatanje ekonomskih ishoda proizašlih isključivo iz algoritma. U tom smislu, oni puštaju svoj kod i pozivaju ostale da kroz njega pokreću svoje modele. Dugoročno gledano, ova otvorenost biće takođe važan deo prerastanja takvih alata u pouzdane, kaže Sočer. „Ako koristite AI kako biste ga preporučili nekim ljudima u formiranju njihovih nižih ili viših stopa oporezivanja,“ ističe on, „onda bi bilo bolje da budete dobro upoznati zašto je tako – da dobro poznajete razloge zbog kojih je proračun baš takav, a ne drugačiji.“

Will Douglas Heaven, MIT Technology Review

Elon Musk izbrisao stranice svojih kompanija sa Fejsbuka

Ilon Mask je „ubio“ stranice koje su njegove firme imale na Fejsbuku, a koje je pratilo više od 5 miliona sledbenika, prenosi portal za informaciono i tehnološko preduzetništvo Venture Beat.

U četvrtak 22. marta, poznati američki preduzetnik Elon Musk naložio je zaposlenima u svojoj kompaniji SpaceX da obrišu stranicu koja je ovu firmu predstavljala na Fejsbuku. Još dve Maskove firme, Tesla i SolarCity, takođe su izbrisale svoje Facebook stranice. SpaceX i Tesla su zajedno imali više od pet miliona sledbenika. Ovaj potez je sproveden u delo za manje od sat vremena, kao odgovor na izazov upućen od jednog korisnika Tvitera.

Musk: “Facebook? Šta je to?”

Maskov nalog za gašenje naloga na Fejsbuku usledio je nakon sto je u sredu 21. marta kompanija Mozilla saopštila da se više neće oglašavati na Facebook-u. Ova runda žestokih reakcija pokrenuta je razotkrivanjem o upletenosti ovog giganta društvenih medija u skandal sa firmom Cambridge Analytica, čiji je vlasnik po mnogo čemu kontroverzni milijarder (i ekspert za AI) Robert Merser (Robert Mercer).

Iako su Mozilla i Musk definitivno zauzeli stavove protiv Fejsbuka, čini se da su mnoge kompanije dosad još nisu izbrisale svoje Facebook stranice, niti su prestale da se oglašavaju na ovom kolosu u polju društvenih medija.

Pretprošlog petka (16. mart), u očekivanju oštrih medijskih izveštaja, Facebook je suspendovao SCL Grupu (SCL Group) i kompaniju Cambridge Analytica sa Facebook platforme. Svet će, malo potom, saznati i da je Facebook bio svestan zloupotrebe podataka kako bi se kreirali psihološki profili 50 miliona korisnika Fejsbuka već 2015. godine, ali čini se da je za sada obelodanjena samo zloupotreba podataka koja je bila rezultat izveštavanja novinskih kuća kao što je, pre svega, londonski Gardijan.

CEO kompanije Cambridge Analytica Aleksander Niks (Alexander Nix) suspendovan je od strane njegove kompanije nakon objavljivanja skrivenih traka u kojima je govorio o ulozi koju je kompanija igrala u Trampovoj kampanji i lažnom svedočenju pred sudovima u Sjedinjenim Državama i Britaniji; sve je ovo snimio novinar koji se Niksu predstavio kao potencijalni, i kojem se doskora prvi čovek Kembridž Analitike razmetljivo otvorio u trenutku iskrenosti, rekavši kako je sposoban da ucenjuje one političke rivale koji su prepreka u njegovom poslu.

Brajan Ekton (Brian Acton), koosnivač WhatsApp aplikacije, koja je Facebook mreži prodata za 19 milijardi dolara, na svom Twitter nalogu pozvao je svet da obriše Facebook. Kratko, direktno: “Vreme je. #DeleteFacebook“, glasi njegov tvit.

Ekton je početkom ove godine napustio Facebook, nakon što ga je kompanija učinila neverovatno bogatim, pošto je kupila WhatsApp. Izgleda da je ovo bila kulminacija Ektonovog nezadovoljstva, a Facebook i WhatsApp je napustio kako bi osnovao sopstveni biznis. Usput je investirao čak 50 miliona dolara u WhatsApp konkurenta, aplikaciju Signal.

Ovo nije prvi put da bivši zaposleni kritikuju Facebook, želeći na taj način da „pomognu svetu“. Isto je učinio i bivši direktor razvoja Facebook poslovanja, koji je rekao da žali zbog alata koje su stvorili u Facebook sistemu, koji uslovljavaju kako društvo funkcioniše.

Inače, početkom prošle godine svetska javnost je – opet zahvaljujući londonskom Gardijanu – doznala da je na aplikaciji WhatsApp pronađen bezbednosni propust koji omogućava Facebooku i drugima da presretnu i čitaju kodirane poruke.

Kompanija Facebook tvrdila je da niko ne može da presretne poruku u WhatsApp, pa čak ni sama kompanija i njeni zaposleni, čime, kako kažu, obezbeđuju više od milijardu korisnika ovog servisa za razmenu poruka.

Međutim, istraživanja su pokazala da ipak mogu da čitaju, i to zbog načina na koji je WhatsApp primenio protokol za kodirane poruke.

Aktivisti za zaštitu privatnosti kažu da je ovakav propust “velika pretnja slobodi govora”, upozoravajući da vladine agencije mogu da iskoriste situaciju i “špijuniraju” korisnike koji veruju da su poruke koje šalju bezbedne.

Fransoa Šole iz kompanije Google, inače glavni autor popularne biblioteke Keras duboko mrežno-neuralno učenje, insistirao je da praktikanti u oblasti AI ne bi trebalo da rade za Facebook.

Kao odgovor na skandal, generalni direktor Mark Zuckerberg priznao je da je ovaj skandal poljuljao poverenje između Fejsbuka i njegovih korisnika, FB je predstavio niz promena svoje platforme za aplikacije, uključujući i planove za reviziju aplikacija kojima je omogućen pristup velikim količinama korisničkih podataka.

Težak period za Facebook se nastavlja, a kraj aferi sa proneverom preko 50 miliona korisničkih naloga se ni ne nazire.

U prilog ovome treba pomenuti i da je Blekberi pre tri tedelje, u utorak 6. marta, predao tužbu zbog kršenja autorskih prava protiv Fejsbuka i njegovih aplikacija Whatsapp i Instagram. U tužbi, Blekberi tvrdi da su te aplikacije kopirale tehnologiju i funkcije koje je Blekberi razvio za svoju aplikaciju Blackberry Messenger.

Podizanje tužbe zbog kršenja patentnih prava deo je strategije Džona Čena (John Chen), Blekberijevog CEO-a, u kojem pokušava da skupi što više novca za svoju kompaniju.

Blekberi je bio jedna od dominantnih sila u mobilnom svetu –  početkom 2009. godine držali su 20,1 odsto tržišta, a u trećem kvartalu 2016. godine, pali su na samo 0,1%. Lansiranjem novih Android modela, prodaja je počela da raste, ali su prošle godine prodali samo 850.000 telefona.

“Optuženi su stvorili mobilne aplikacije za dopisivanje koje su koristile Blekberijeve inovacije. Koristili su veći broj rešenja i oblasti bezbednosti i zaštite i funkcija koje poboljšavaju njihove karakteristike”, napisao je kanadski Blekberi u dokumentima koje su predali federalnom sudu u Los Anđelesu.

“Zaštita intelektualnih prava i imovine deoničara posao je svakog CEO-a”, rekla je portparolka Blekberija Sara Mekini za Rojters. Međutim, istakla je kako tužbe nisu ključne za Blekberijevu strategiju poslovanja. Tužba je rezultat dugogodišnjih pregovora, a Blekberi se obavezao svojim deoničarima na pokretanje pravnih mera.

Zamenik Fejsbukovog glavnog pravnika izjavio je da se kompanija sprema da se bori protiv tužbe. Blekberi u stvari pokušava da prisili druge kompanije na plaćanje naknade za korišćenje njihovih preko 40.000 patenata koji pokrivaju tehnologiju za operativne sisteme, mrežnu infrastrukturu, akustiku, dopisivanje, sisteme za automobile, bezbednost i bežičnu komunikaciju. Blekberi trenutno takođe prodaje svoju bezbednosnu tehnologiju za samonavodeće automobile.sistem,

Blekberi je u februaru prošle godine tužio još jednog posrnulog giganta, finsku Nokiu, zbog kršenja patenata povezanih s 3G i 4G komunikacijom. Kompanije su trenutno još uvek na sudu oko te tužbe. Prošle godine, Qualcomm se nagodio sa Blekberijem, pa su im platili 940 miliona dolara zbog neplaćenih naknada za korišćenje patenata. Tokom septembra prošle godine, Blekberi je objavio da su sklopili tajni dogovor s proizvođačem mobilnih telefona Blu, ponovo zbog kršenja patentnih prava.

Khari Johnson,  Venture Beat

 

 

Hoće li veštačka inteligencija i hedž fondovi nadmudriti tržište?

Neki hedž-fondovi pohvalili su se da njihovi AI algoritmi donose odluku o tome kako će trgovati – ipak, ma koliko ekstravagantno zvučalo, ovi sistemi su daleko uobičajeniji nego što nam se na prvi pogled čini.

Svakoga dana kompjuteri obave više miliona elektronskih trgovina obavljanjem delikatnih kalkulacija, i to sve sa ciljem zadobijanja makar male prednosti u pogledu brzine i efikasnosti nad takmacima. Ono što je ovde, međutim, daleko značajnije jeste da se odluke u trgovini berzanskim papirima sve češće donose zahvaljujući razvoju još pametnijih, još autonomnijih algoritama.

Obe ove poslovno već dobro utvrđene firme koje se bave trgovinom akcijama na berzi, kao i nekolicina startup firmi istražuju da li bi takve tehnike trgovanja, pozajmljene iz oblasti veštačke inteligencije, mogle da im pomognu kako bi nadmudrili konkurenciju. A svakome ko negde ima uložen novac bi više nego dobrodošlo da sazna da li bi ovaj trend mogao da ozbiljnije izmeni dinamiku tržišta.

Kvantitativni hedž fondovi, uključujući Bridgewater Associates, Renaissance Technologies, ​​D.E. Shaw i Two Sigma, naravno, već nekoliko godina zdušno koriste pristup berzanskoj trgovini kroz napredne algoritme. Mnoge od metoda koje koje ove kompanije koriste mogu se identifikovati u oblasti istraživanja veštačke inteligencije (AI).

U poslednjih nekoliko godina, međutim, takođe je očigledno i ogromno oživljavanje interesovanja za rezultate u oblasti veštačke inteligencije, zahvaljujući novim tehnikama kojima mašine „uče“ kao i za metodu „dubokog učenja“ mašina (primereniji duhu srpskog jezika bio bi izraz „dubinski uvid“ ili, još bolje, „učenje s razumevanjem“; tzv „Deep Learning“) koji obuhvata obuku velikih virtuelnih neuronskih mreža za prepoznavanje obrazaca u podacima. Dubokim učenjem, koje su računari dosad savladali, mašine su trenutno u stanju za potpuno ljudski nivo percepcije slike, teksta i zvuka. Postavlja se pitanje da li današnja veštačka inteligencija može da uradi to isto ali za finansijske podatke: da ih percipira „na naš način“, s tim što bi brzina, referentnost i pouzdanost berzanskih kalkulacija/odluka (kako se naučnici nadaju) bili neslućeno veći.

Jasno je kako je ovaj nedavni napredak privukao pažnju inženjera i stručnjaka koji rade u finansijama. Prošlog decembra se u Montrealu, tokom veoma važnog akademskog događaja okupila svetska elita u istraživanju veštačke inteligencije, na skupu pod nazivom „Sistemi za procesiranje neuralnih informacija“ (Neural Information Processing Systems, NIPS): Nekoliko hiljada istraživača s brojnih univerziteta i iz najrazličitijih industrijskih oblasti tom je prilikom prisustvovalo kako bi razmotrili napredak u razvoju novih algoritama za mašinsko učenje. U oblasti rezervisanoj za slikovne tj poster-prezentacije diplomaca, tehnološki giganti poput Gugla, Fejsbuka, Epla, Majkrosofta, Amazona i IBM-a platili su svoje učešće da bi dobili svoje „stolove za regrutaciju“: prostor na kojem bi obavljali intervjue za zapošljavanje, u nadi da će najveće sveže talente privoleti da dođu da rade za njih. Ipak, ne treba smetnuti s uma da skoro polovina firmi koja je pokušala da regrutuje „mlade nade“ tokom NIPS-a nisu bile tehnološke kompanije već – hedž fondovi i finansijske kompanije.

Jedna od takvih kompanija bila je i velika britanska investiciona firma MAN AHL, koja je već godinama fokusirana na primenu statističkih pristupa radi osmišljavanja što bolje investicione strategije. Entoni Ledford, šef razvojnog sektora ove kompanije objašnjava načine kako se istražuje da li tehnike poput dubokog učenja mogu primeniti na investicije i finansije. “Sve to je još uvek u ranoj fazi”, kaže Ledford. “Obezbedili smo novac za testiranje AI berzanske trgovine. Uz primenu metoda dubokog učenja kod mašina, ukoliko sve bude u redu, započećemo test-trgovinu, kao i ostale primenama koje učenje mašina može naći (u berzanskoj trgovini).”

Brokerske operacije na berzi mogu izgledati kao očigledno mesto za primenu dubokog učenja, ali zapravo nije jasno koliko je uporediv izazov pronalaženja suptilnih obrazaca koji se tiču berzanskih podataka u realnom vremenu sa, recimo, prepoznavanjem lica na digitalnim fotografijama. “Ovaj problem je daleko drugačiji” priznaje Entoni Leford, šef razvoja u MAN AHL.

Iz redova akademskih stručnjaka čuju se tonovi upozorenja. Stiven Roberts, profesor mašinskog učenja na Univerzitetu Oksford kaže da duboko učenje može biti dobro “za ekstrahovanje skrivenih trendova, informacija i odnosa”, ali dodaje da je “još uvek suviše krhko kada je reč o baratanju ishodima visoke neizvesnosti, uz semantički tj značenjski šum na relaciji mašinačovek, koji prevladavaju u finansijama. ”

Roberts takođe primećuje da duboko učenje može biti proces koji se odvija relativno sporo i koji ne može ponuditi one tipove zagarantovanog tj predvidljivog ponašanja koje drugi statistički pristupi nude. U principu, kako kaže, postoji izvesna medijska bukla oko ideje primene AI u oblasti finansija. “AI je veoma široka tema”, kaže on. “A mnoge standardne statističke tehnike koje se koriste su, shodno tom donekle pomodnom trendu, preimenovani u veštačku inteligenciju i mašinsko učenje.”

Ipak, nove finansijske firme koje se reklamiraju kao AI-orijentisane mogu biti nešto drukčije i unikatne. Ovo uključuje firmu Sentient Technologies iz San Franciska, Rebellion Research u Njujorku, i investicionu kompaniju Aidyia iz Hong Konga.

Jedna od najperspektivnijih upotreba relativno novih AI tehnika mogla bi da se primeni u procesu obrade nestrukturiranih podataka prirodnog jezika, u obliku novinskih članaka, poslovnih izveštaja kompanije i poruka u društvenim medijima, u nastojanju da prikupe uvid u buduće perspektive funkcionisanja preduzeća, valute, robe ili finansijskih instrumenata.

Kompaniju za finansijski AI po imenu osnovao je čuveni istraživač veštačke inteligencije, Ben Goertzel, koji je ujedno i osnivač kompanije Hanson Robotics i Aidyia Holdings, kao i predsednik jednog AI projekta s otvorenim kodom  koji se zove OpenCog. Aidyia je otpočela AI berzansku trgovinu prošle godine, a Goertzel kaže da je pristup njegove kompanije daleko ambiciozniji nego što su to tehnike koje se koriste u većini hedž fondova danas, uzimajući inspiraciju iz evolutivnog programiranja, probabilističke logike, i dinamike haotičnih sistema.

“Naš sistem sadrži niz računarskih unosa, uključujući cene i obim berzanskih transakcija širom sveta, vesti iz različitih izvora na više jezika, makroekonomske i kompanijske računovodstvene podatke i još mnogo toga”, rekao je Goertzel za MIT Technology Review.  “Potom proučava kako su ovi različiti faktori istorijski povezani,  učeći celine sastavljene od desetina hiljada prediktivnih modela koji mogu da poseduju prediktivnu vrednost (stabilno predviđanje budućih kretanja na berzi), a na osnovu svojih istraživanja ranije prikupljenih podataka”, što doprinosi upravljanju ulaganjima kompanije.

Svakako da je prisutan trend ka povećanju automatizacije među finansijskim firmama. Preqin, kompanija koja obezbeđuje podatke iz oblasti finansijske industrije, navodi da je 40 odsto hedž fondova nastalih prošle godine bilo “sistematično”, što znači da se u donošenju svojih odluka oslanjaju na računarski generisane modele.

Međutim, ne dele baš svi uverenje da je AI revolucija u oblasti finansija neminovna. Dejvid Harding, osnivač-milijarder i direktor druge britanske trgovačke kompanije, Winton Capital Management, uglavnom je skeptičan prema svoj toj trendovskoj buci oko mašinskog učenja i veštačke inteligencije. “Ako se malo bolje udubite”, kaže Vinton, “rekao bih da je to manje-više ono što smo radili i u proteklih 30 godina”.

Harding se isto tako seća još jednog sličnog buma čiji su interes i fokus bili na neuronskim mrežama, a koji je rezultirao pojavom brojnih startup firmi tokom ranih 1990-ih.

“Ljudi su počeli da govore kako ‘Postoji neverovatna nova računarska tehnika koje će oduvati sve što je postojalo ranije.” Tu je i moda u primeni genetskih algoritama “, priseća se on. “Pa, mogu da vam kažem da nijedno od tih preduzeća danas ne postoji.”

Ledford, koji radi u kući Man AHL za alternativne vidove investiranja i menadžmenta, takođe ima nekoliko reči upozorenja za svakoga ko misli da najnovije tehnike mašinskog učenja mogu ponuditi neku čudesnu prečicu do bogatstva . “Važno je da zapamtite kako stanje na tržištima može biti nevažno i čak ponižavajuće”, kaže on. “Rekao bih samo još i to da vam je bolje da sebe ne pohvalite previše, ali se isto tako nemojte ni previše obeshrabriti.”

 

Technology Review