Koliko IT giganti plaćaju AI talente?


Gotovo sve velike tehnološke kompanije imaju sopstvene projekte razvoja veštačke inteligencije i spremni su da stručnjacima iz ove oblasti daju višemilionska godišnja primanja ne bi li ih privoleli za sebe.

Start-up kompanije iz Silicijumske doline  oduvek su imale prednost regrutovanja u odnosu na industrijske gigante: iskoristite priliku i mi ćemo vam dati vlasnički udeo, koji bi vas mogao učiniti bogatim ako kompanija uspe.

Trenutna trka u tehnološkim industrijama koje obuhvataju veštačku inteligenciju mogla bi da ovo pitanje prednosti i najboljih olakša – ili će, ako ništa drugo, to olakšati za barem nekoliko potencijalnih zaposlenih koji puno toga znaju o veštačkoj inteligenciji.

Najveće tehnološke kompanije ulažu ogromne svote u razvoj veštačke inteligencije, unovčavajući svoje znanje na šarolike načine – od skeniranja lica na pametnim telefonima i „pričljivih“ gedžeta za kafu do kompjuterizovane zdravstvene zaštite i autonomnih vozila bez ljudske podrške. Budući da su u potrazi za budućnošću, AI ekspertima danas nude plate koje su zapanjujuće čak i u industriji koja se nikada, zapravo, i nije bila ustezala da zasipa bogatstvom vrhunske informatičke talente.

MIT Review je intervjuisao devet eksperata iz oblasti veštačke inteligencije kao i „dubokog učenja“, sada veoma aktuelne uže discipline unutar AI. Svi su oni, iz razumljivih razloga, tražili da ostanu anonimni. Tipični A.I. stručnjaci – uključujući one koji su sa upravo izašli iz škola sa informatičkim doktoratima pod miškom, ali i one sa nižim obrazovanjem i samo nekoliko godina iskustva, mogu biti plaćeni od $300.000  do pola miliona dolara godišnje ili više – u kešu ili u deonicama firme koja ih angažuje. Ovim stručnjacima, takođe, razne kompanije nude vrtoglave cifre samo kako bi prešli pod njihovo okrilje.

Poznata imena na polju veštačke inteligencije primaju nadoknadu kroz plate ili kompanijske akcije koje iznose jednocifrenu ili dvocifrenu brojku u milionima dolara u periodu od četiri ili pet godina. U određenom trenutku, ovi ugovori se obnavljaju ili se pregovara o novom ugovoru, što veoma podseća na način na koji profesionalni sportisti potpisuju svoje ugovore.

Na samom vrhu su rukovodioci sa iskustvom, koji i sami upravljaju A.I. projektima. Gugl je prošle godine podneo sudsku tužbu protiv svog dugogodišnjeg zaposlenika, Entonija Levandovskog (Anthony Levandowski), doskorašnjeg šefa Guglovog AI odeljenja za razvoj autonomne vožnje. Levandovski je 2007. započeo svoju karijeru u Guglu, i tokom deset godina (sve do 2017.) ukupno zaradio 120 miliona dolara, pre nego što se prošle godine pridružio Uber-u, tako što je ova firma preuzela veoma izgledni start-up čiji je on bio koosnivač. Ovaj slučaj privukao je obe kompanije u sudsku arenu na okršaj u kojem je ulog više nego dragocena intelektualna svojina Levandovskog, za koju obe firme smatraju da polažu prava.

Plate informatičara a pre svega talentovanih poznavalaca veštačke inteligencije toliko vrtoglavo rastu da postoji šala po kojoj je tehnološkoj industriji, da bi privukla vrhunske stručnjake, potreban budžet koji NFL i sponzori daju najvećim zvezdama američkog ragbija. “Ovo će olakšati stvari”, rekao je Kristofer Fernandez, jedan od Majkrosoftovih menadžera za zapošljavanje novih kadrova. “I to umnogome.”

Nekoliko je „katalizatora“ tj razloga koji su doprineli naglom ubrzavanju trenda udeljivanja astronomskih plata nadarenim informatičarima. Auto-industrija se sa Silicijumskom dolinom već neko vreme nadmeće za iste stručnjake, koji im mogu pomoći u izgradnji autonomno navodećih automobila. Velike tehnološke kompanije kao što su Facebook i Google takođe imaju puno novca za bacanje na probleme čije rešenje i ključ, kako misle, leži u razvoju veštačke inteligencije, poput izgradnje digitalnih asistenata za pametne telefone i kućne uređaje, kao i otkrivanje neprimerenih i uvredljivih sadržaja.

Od svega, ipak, najviše nedostaju novi talenti, a velike kompanije pokušavaju da ih uvrste u svoje redove onoliko koliko je to za sada moguće. Rešavanje teških A.I. problema nije isto što i pravljenje mobilne aplikacije koja je „hit sezone“. Po podacima jedne nezavisne montrealske AI laboratorije („Element AI“), danas u celom svetu nema ni 10.000 ljudi koji poseduju veštine potrebne za suočavanje s komplikovanim AI istraživanjima.

“Svedoci smo epohe u kojoj razvoj AI ne mora biti nužno dobar i po društvo, ali takvo je racionalno ponašanje ovih kompanija”, rekao je Endrju Mur, dekan računarstva na Univerzitetu Karnegi Melon (Carnegie Mellon), koji je nekada radio u Guglu. “Svako od njih grozničavo i sa strepnjom nastoji da za sebe obezbedi tu malu grupu ljudi koja je u stanju da radi na ovoj tehnologiji“.

Troškovi akvizicije A.I. laboratorije „DeepMind“, koju je Gugl 2014. kupio za 650 miliona dolara i pritom zaposlio oko 50 ljudi, dobro ilustruje o čemu je ovde reč. Prema raspoloživim podacima, “troškovi osoblja” ove britanske laboratorije, čiji je broj narastao na 400 zaposlenih, iznosio je u 2016. godini 138 miliona dolara. To znači da je svaki zaposleni u proseku dobio 345.000 dolara.

“Teško je nadmetati se sa gigantima, pogotovo ako spadate u manje kompanije”, rekla je Džesika Kataneo, izvršna regruterka firme CyberCoders, koja se bavi regrutacijom informatičkih talenata.

Najnaprednija istraživanja veštačke inteligencije bazirana su na skupu matematičkih tehnika koje se zovu duboke neuronske mreže. Ove mreže su matematički algoritmi koji su u stanju da, analizom podataka, sami odrede svoje zadatke. Tragajući za obrascima u milionima slika pasa, na primer, neuronska mreža može naučiti da prepozna određenog psa. Ova matematička ideja datira iz pedesetih godina prošlog veka, ali je sve do pre pet-šest godina tavorila na marginama kako industrije tako i akademskih rasprava.

Do 2013. godine Google, Facebook i još nekoliko kompanija zapošljavali su relativno mali broj istraživača specijalizovanih za ove tehnike. Neuronske mreže sada pomažu pri prepoznavanju lica na fotografijama postavljenim na Fejsbuku, identifikuju komande koje naložimo uređajima zvanim „digitalni asistenti“, i koji se već nalaze u našim dnevnim sobama (kao što je, recimo, Amazon Echo), a trenutno u riltajmu prevode strane jezike na Majkrosoftovom telefonskom servisu Skajp.

Koristeći se istim matematičkim tehnikama, istraživači unapređuju autonomna vozila i razvijaju bolničke usluge koje mogu identifikovati bolesti tokom procesa skeniranja, a tu su i malopre pomenuti digitalni pomoćnici koji ne samo što prepoznaju izgovorene reči već ih i shvataju; tu su i automatizovani sistemi za trgovanje akcijama, kao i roboti koji pokreću objekte koje nikada ranije nisu videli.

Sa tako malo dostupnih stručnjaka u oblasti veštačke inteligencije, velike tehnološke kompanije zapošljavaju najbolje i najsjajnije akademske građane. U tom procesu, oni na raspolaganju imaju ograničen broj profesora sposobnih da svoje studente podučavaju tajnama ovakvih tehnologija.

Kompanija Uber angažovala je 40 stručnjaka iz revolucionarnog A.I. programa univerziteta Carnegie Mellon iz 2015, kako bi ih zaposlila na projektu autonomno navodećih vozila. Tokom poslednjih nekoliko godina, četiri najpoznatija univerzitetska A.I. istraživača napustilo je amfiteatre, sale za predavanja i svoje profesure na Univerzitetu Stenford. Na Univerzitetu u Vašingtonu, šest od 20 profesora za veštačku inteligenciju sada je na odsustvu ili delimičnom odsustvu jer je angažovano za spoljne kompanije.

“Prisutno je ogromno usisavanje akademskih profesora, koje IT industrija prosto posrče”, kaže Oren Ecioni, koji odsustvuje s mesta profesora na Univerzitetu u Vašingtonu kako bi nadgledao „Allen“, neprofitni institut za veštačku inteligenciju.

Neki profesori pronalaze način za pravljenje kompromisa. Luk Zetlmojer (Luke Zettlemoyer) sa Univerziteta u Vašingtonu odbio je poziciju u laboratoriji u Sijetlu, za koju mu je Google nudio platu trostruko veću od dosadašnje (oko 180.000 dolara, prema izvorima dostupnim javnosti). Umesto toga, izabrao je mesto u Institutu Allen, položaj koji mu omogućava da nastavi s podučavanjem mladih informatičara.

“U Americi je brojno nastavno osoblje koje postupa na sličan način, razdvajajući vreme na ono koje provede u  komercijalnoj industriji i ono tokom kojeg predaje u okviru akademske zajednice”, rekao je Zetlmojer. “Nije za poređenje koliko su plate veće u industriji, pa profesori nemaju drugog razloga da ostanu na univerzitetu osim ukoliko zaista brinu o tome da budu deo akademske zajednice, unutar koje će moći da svoje znanje prenesu novim generacijama.”

U pokušaju da privuku nove A.I. inženjere, kompanije poput Gugla i Fejsbuka sačinile su nastavne programe sa ciljem da postojeće zaposlene podučavaju “dubokom učenju” i srodnim tehnikama. I neprofitne organizacije kao što su Fast.ai ili Deeplearning.ai, čiji je osnivač bivši profesor Stenforda koji je pomogao pri stvaranju laboratorije Google Brain, nude onlajn kurseve dubokog učenja.

Osnovni koncepti dubokog učenja nisu teški za razumevanje, i zahtevaju tek nešto malo više od srednjoškolske matematike. Pa ipak, zaista osvojiti ovu struku zahteva više značajnijih matematičkih i intuitivnih talenata koje neki zovu “mračnom umetnošću” (dark art). Potrebno je, uz to, i posebno znanje za polja kao što su autonomno navodeća vozila, robotika i zdravstvena zaštita.

Kako bi održale korak, manje kompanije traže talente na neobičnim mestima. Neki angažuju fizičare i astronome koji imaju neophodne matematičke veštine. Neke druge američke start-up kompanije tragaju za talentima u Aziji, Istočnoj Evropi i drugim mestima na kojima su plate daleko manje nego u Sjedinjenim Državama – pa je, samim tim, lakše da za svoju firmu pridobiju nekog briljantnog Kazahtanca nego „momka iz komšiluka“, koji je poreklom iz Kalifornije.

“Ne mogu se takmičiti sa Guglom, a i ne želim”, rekao je Kris Nikolson, izvršni direktor i koosnivač startup kompanije Skymind iz San Franciska koji je za sebe pridobio AI inženjere iz osam zemalja. “Tako da nudim vrlo primamljive plate stručnjacima doskora angažovanim u zemljama u kojima je inženjerski talenat finansijski potcenjen.”

Ali, i giganti u IT industriji rade to isto. Google, Facebook, Microsoft i drugi otvorili su A.I. laboratorije u Torontu i Montrealu, gde se se obavlja većina istraživanja koja nisu na teritoriji Sjedinjenih Država. Google, takođe, zapošljava i talente u Kini, gde je Microsoft već dugo prisutan.

Stoga i nije iznenađujuće što mnogi smatraju kako se nedostatak talenata iz ovih informatičkih oblasti neće ublažiti još dugi niz godina.

“Naravno, potražnja prevazilazi ponudu, i taj se sled stvari u dogledno vreme neće promeniti” kaže Jošua Bengio (Yoshua Bengio), profesor na Univerzitetu u Montrealu i istaknuti istraživač na polju veštačke inteligencije. “Potrebno je mnogo godina da biste diplomce pretvorili u doktore iz ovih naučnih oblasti.”

 

New York Times

 

Nauka – rizik, tajna i misterija, a ne udoban biznis


Superkompjuter AlphaGo Zero pokazuje kako biznisi gube bitku s inovacijama. Da li je najbolje što čovek može da uradi s veštačkom inteligencijom igranje igara kao što su šah i go, ili je to dalji napredak kroz ključne naučne proboje, pita se Tim Harford u autorskom članku za Fajnenšel tajms.

Teško je ne biti impresioniran – uz to možda i pomalo uznemiren – napretkom. Superračunar “Duboko plavetnilo“ (Deep Blue) kompanije IBM je pre 20 godina (1997) pobedio je tada najvećeg svetskog šahistu, Garija Kasparova. Taj je računar bio astronomski skup hardver, brižno opsluživan i podučavan od strane ljudi.

Kompjuteru je bilo daleko teže da ovlada igrom Go, koja je mnogostruko komplikovanija od šaha. Ipak, kada se program AlphaGo uz fanfare pojavio 2016. godine, nakon nekoliko meseci obuke je lagano potukao najbolje svetske igrače.

Pretprošle nedelje je DeepMind, istraživačka firma za razvoj veštačke inteligencije objavila da je napravila superiornog AI igrača pod imenom AlphaGo Zero. Ovaj unapređeni model je brži, koristi manje hardvera, a „patosirao“ je svog prethodnika AlphaGo u 100 duela, ne dajući mu priliku ni za jednu pobedu. Uz sve to,  AlphaGo Zero je potpuno „samouk“ i uči bez ikakve ljudske asistencije: On je, štaviše, postigao ovakav nesvakidašnji rezultat nakon samo 72 sata prakse.

Neverovatan napredak kompanije AlphaGo Zero doprineo je već prisutnoj grozničavoj uznemirenosti što roboti preuzimaju ljudske poslove, izazivajući masovnu nezaposlenost. Pa ipak, ta anksioznost teško da se uklapa s visokim stopama zaposlenosti i razočaravajućim rastom produktivnosti koju vidimo u Sjedinjenim Državama, a posebno u Britaniji. Postoji veliki broj (ljudskih) poslova i profesija, ali, očigledno, ne i puno inovacija.

Za ovaj paradoks postoje različita moguća objašnjenja, ali najjednostavnije je ovo: AlphaGo Zero je izuzetak. Produktivnost i tehnološki napredak su slabi, jer istraživanje koje stoji iza napretka veštačke inteligencije zapretene u mašinu AlphaGo Zero nije tipičan način na koji pokušavamo da proizvedemo nove ideje.

Gledište Garija Kasparova u vezi veštačke inteligencije upregnute u igranje ljudskih igara je fascinantno. U svojoj nedavno objavljenoj knjizi „Deep Thinking“, on citira pokojnog kompjuterskog naučnika Alana Perlisa: “Optimizacija ometa evoluciju”. U slučaju kompjuterskog šaha, Perlisova maksima dobro opisuje istraživače koji su izabrali pragmatične „kratke rezove“ zarad brzog rezultata. Ipak, jedno dublje, rizičnije istraživanje biva danas zanemareno. IBM-ov prioritet sa Deep Blue mašinom nije bilo sticanje novih saznanja u oblasti AI, već pobeda – a pobeda je, u naučnom smislu, bila ćorskokak.

A ovoga bi se trebalo sramiti. Pioniri računarstva, Alan Tjuring i Klod Šenon (Claude Shannon) verovali su da bi šah mogao predstavljati plodno polje za istraživanje i razvoj veštačke inteligencije u nekim daleko značajnijim oblastima. Ta nada je bila brzo skrajnuta brutalnim pristupom, od kojeg se malo šta naučilo izuzev saznanja da ova mašina dobro igra šah..

Lako je shvatiti zašto bi jedna komercijalna kompanija imala jedva neko zrno interesovanja za tehnike ranog prepoznavanja obrasca, koje su pročišćene, prerađene i „oplemenjene“ u računaru AlphaGo. Gari Kasparov opisuje pokušaj njihovog korišćenja u šahu; posmatrajući kako bi velemajstori odmah osvajali igre u kojima su žrtvovali svoje najjače adute, figuru kraljice, mašina je, shodno njihovom „paternu“ tj obrascu (pogrešno) zaključila da bi morala žrtvovati svoju kraljicu u svakoj prilici.

Pa ipak, na kraju, ove tehnike prepoznavanja obrazaca su se pokazale daleko snažnijim i generalno primenjivim za razliku od metoda koje koriste najbolji šahovski kompjuteri; stoga, pitanje glasi: želimo li da promenimo naš svet ili da samo osvojimo šahovsku igru?

Nije ovo samo opominjuća priča koja se tiče šaha. Korporacije su „protegle“ pipke svojih ambicija i na mnoga druga mesta. Korporativne istraživačke laboratorije nekada su finansirale fundamentalna istraživanja od najvećeg značaja. Leo Esaki, koji je radio u korporacijama Sony i IBM dobitnik je Nobelove nagrade za fiziku, kao i Džek Kilbi iz kompanije Texas Instruments. Irving Lengmjuir (Irving Langmuir) iz Dženeral Elektrika dobitnik je Nobelove nagrade iz oblasti hemije. Laboratorije kompanije Bel (Bell Labs) iznedrile su toliki broj nobelovaca – zajedno sa samim Šenonom. Davno su prohujala vremena kada se kompanije nisu plašile ulaganja u fundamentalne nauke.

To se, vremenom, promenilo, kako pokazuje istraživački rad troje ekonomista – Ašiša Arore, Šeron Belenzon i Andrea Pataconija (Ashish Arora, Sharon Belenzon, Andrea Patacconi). Kompanije još uvek ulažu u inovacije, ali se fokus stavlja na praktične primene a ne na osnovne nauke, dok se rezultati istraživanja često prenose na manje poslovne jedinice, čija se intelektualna svojina može lako kupiti i prodati.

Korporativni istraživači proizvode više patenata, ali ih je teže uočiti na stranicama naučnih časopisa. Kako kaže profesor Arora, istraživanje i razvoj postali su “manje I, više R” (manje istraživanje a više razvoj „Less Research, more Development“). Istraživanje AlphaGo-a, kaže on, predstavlja izuzetak od ovog pravila. A ovo je izuzetno bitno, jer i najosnovnije istraživanje na kraju završi kao komercijalno korisno. Volimo zlatna jaja, ali možda izgladnjujemo zlatnu koku.

Sve ovo ne mora biti katastrofalno ako bi druga istraživačka tela, kao što su univerziteti, popunjavali ovaj jaz između komercijale i ključnih istraživačkih proboja. Ipak, to nije nešto što bi trebalo uzeti zdravo za gotovo. Kao što je dokumentovao ekonomista Bendžamin Džouns (Benjamin Jones), teže je, naravno – pronaći/iznedriti nove ideje. Jedan od znakova ovoga se ogleda u složenosti sastava istraživačkih timova, koji su nikad veći i sačinjeni od enormnog broja sve uže specijalizovanih istraživača… koji su, uzgred, i sve skuplji…

Možda bi bilo naivno kada bismo naprosto podsticali kompanije da potroše više na fundamentalna istraživanja – ali neko mora da ih motiviše i na to podseća. Jedan interesantan pristup je kada bi sama država finansirala nagrade za inovacije koje bi išle u ruke istinski progresivnim rešenjima koje prave značajne naučne skokove i menjaju anticipaciju. Takve nagrade mobilišu javne fondove i javne ciljeve sve dok koriste agilnost i raznolikost pristupa privatnog sektora. Takve nagrade, međutim, funkcionišu samo u određenim situacijama.

Profesionalni sport je popularizovao praksu “marginalnih dobitaka”: brza optimizacija, u potrazi za probojem – tamo gde je sadašnja istraživačka granica „najtanja“. Ispostavilo se da su korporativna istraživanja imala isti obrt pre više decenija. Nema ničeg pogrešnog u marginalnim poboljšanjima i sitnim pomacima, ali se ne sme dozvoliti da ona istiskuju špekulativno istraživanje, koje je u samoj srži svakog istraživanja. Nauka, ona fundamentalna,  ima dublju i zbrkaniju praksu od sporta. Stoga moramo nastaviti da joj posvećujemo vreme, prostor i novac, kako bismo učinili da naučni skokovi budu veći – rizičniji.

Fajnenšel Tajms

AI & roboti vs. Radnik & osnovni prihod


Čak i najjednostavniji poslovi zahtevaju određene veštine – poput, recimo, kreativnog rešavanja problema – to je ono što AI sistemi još uvek ne mogu da kompetentno obavljaju piše Vinsent Konicer, profesor računarstva, ekonomije i filozofije na Univerzitetu Duke a prenosi MIT Technology Review.

33

Ne prođe ni dan a kada ne čujemo nešto novo o “opasnostima” koje za sobom povlači prodor veštačke inteligencije u radni proces, što nam već neko vreme svakodnevno preuzima poslove: od vozača kamiona, preko računovođa, do radiologa. Analiza instituta Mekinsi sugeriše da je “sada prisutna tehnologija sposobna da potpuno automatizuje 45 odsto aktivnosti ljudi koji su plaćeni da ih obavljaju.” Postoje čak i onlajn-alati, koncipirani na istraživanjima Univerziteta u Oksfordu, kojima je moguće validno proceniti stepen verovatnoće i rok u kojem će određeni poslovi biti automatizovani.

Ova rastuća zabrinutost da će napredak u AI učiniti da najveći broj naših profesija postane zastareo, navelo je neke da se opsete na (univerzalnog) osnovnog prihoda, naime, ideju po kojoj bi svi građani povremeno i bezuslovno primali novac od države (videti: Basic Income: A Sellout of the American Dream, “Osnovni prihod: izdaja američkog sna”). Y Combinator, istaknuti startup inkubator u Silicijumskoj dolini, pokrenuće pilot studiju o osnovnom prihodu u Ouklendu, Kalifornija, predsednik ove firme izjavio je da “u nekom trenutku u budućnosti, kako tehnologija bude nastavila da eliminiše tradicionalne poslove i bude stvarano novo opšte bogatstvo, imaćemo prilike da vidimo neku verziju ovog društveno-ekonomskog fenomena na nacionalnom nivou (Sjedinjenih Država). Nedavnim izveštajem Evropskog parlamenta o mogućim posledicama koje će robotika i veštačka inteligencija imati na tržiše rada,”opšti osnovni prihod treba ozbiljno razmotriti”, dok, istovremeno, ova evropska institucija “poziva sve države članice da to i učine”. U junu ove godine, Švajcarska je održala referendum o osnovnom prihodu (iako je 77 odsto birača glasalo protiv njega).

Da li je kolaps potražnje za ljudskim radom zaista neminovan? Kao AI istraživač, pisac ovih redaka misli da je odgovor odričan, a evo i njegovog objašnjenja.

“Da budem jasan, mislim da u bliskoj budućnosti možemo očekivati značajan napredak AI kao i da će roboti izvršiti značajan uticaj na tržište radnom snagom. S obzirom na napredak u autonomnim vozilima, može se zamisliti da će mnogi profesionalni vozači  u velikoj meri biti eliminisani. Značajan napredak ostvaren je u automatizaciji analize medicinskih snimaka i drugih podataka. Algoritmi preuzimaju sve veći udeo u profesijama koje se tiču finansijskog sektora. Roboti-kuvari su uveliko u fazi razvoja. Ova lista je podugačka i za sada se još više nastavlja”, piše Vinsent Konicer.

32

S druge strane, prikladno je ostaviti “u rezervi” i neki stepen skepticizma. Zapitajte se: Koliko smo tokom protekle decenije bili impresionirani napretkom robota-usisivača? Šta reći o napretku robo-mašine za pranje posuđa? Zapravo,, veoma je teško osmisliti potpuno autonomne AI sisteme spremne za ovakav entropičan i neuredan svet poput našeg, i naše realno okruženje koje je neretko u stanju haosa. Uopšteno govoreći, trenutni AI sistemi nemaju široko shvatanje sveta, uključujući i naše društvene konvencije, a ne poseduju ni zdrav razum. Razumevanje jezika je dobar primer za tu vrstu problema; izuzetno je teško proizvesti kompjutere koji će uspešno odgovarati na široku paletu veoma jednostavnih pitanja (videti članak “Problem jezika u veštačkoj inteligenciji” i “Tvrđi dubinski Turingov test pokazuje koliko su chatbot programi zapravo glupi” – “AI’s Language Problem”, “A Tougher Turing Test Exposes Chatbots’ Stupidity”)..

AI sistemi još uvek nisu u stanju da istinski apstrahuju; stran im je svet apstrakcije, baš kao i uzmicanje korak unazad kako bi ponovo porazmislili i uzeli u razmatranje i neke druge alternative i opcije; nesposobni za preispitivanje sopstvenih procesa rezonovanja, a nisu sposobni ni da uopštavaju ono što se dešava i iz toga izvuku zaključak. Jedna od posledica ovih nedostataka je da su mašine i dalje ograničene kada je u pitanju kreativnost. One, istina, mogu doći do novih rešenja problema. Google DeepMind, je, recimo, sačinio računarski program AlphaGo za igranje igre “Go”, koji je odigrao izuzetno neobičan potez u jednoj od svojih nadmetanja protiv šampiona u ovoj igri, Lija Sidola (Lee Sedol). Veštačka inteligencija može stvoriti neku vrstu “umetnosti”, kao što je očigledno bio slučaj s psihodeličnim radovima nastalim preko Guglove neuronske mreže DeepDream. To, ipak, nije ona vrsta kreativnosti koja zaista može pružati jednu novu perspektivu iz prve ruke. Nije potrebno ni pomišljati a ni potezati takve uzvišene duhovne podvige kao što je, recimo, Ajnštajnova formulacija Opšte teorije relativnosti da bismo potvrdili još uvek nedodirljivu teritoriju rada ljudske mašte i duha. Uzmimo, na primer, asistenta koji predlaže kombinovanje dva sastanka u jedan kako bi učesnici uštedeli vreme. Takvo rešavanje problema za nas je sasvim rutinsko, ali bi veštačkoj inteligenciji i njenom “mentalnom sklopu” bilo veoma teško da ga ponovi.

Sve u svemu, dok nastojimo da AI prodre u naša postojeća radna mesta kako bi ih preuzela, često možemo zapaziti neuspeh mašina, i to u aktivnostima u kojima ljudsko biće ne bi nikada pogrešilo. Istorija AI istraživanja obiluje primerima gde istraživači stvaraju sisteme koji funkcionišu iznenađujuće dobro kada se radi o dobro definisanim zadacima – samo kako bismo se još jednom uverili da je teško zameniti ljude koji još uvek obavljaju slične zadatke u ovom stvarnom i nepredvidljivom, neuređenom i neuređenom svetu.

Možda će tipičniji slučaj biti da poslovi budu delimično eliminisani jer će jedan njegov deo moći da obavlja AI. Tehnološki napredak takođe može da dodatno olakša outsourcing poslove širom sveta. Istovremeno, mnogi poslovi ostaće imuni na robotizaciju, barem u doglednoj budućnosti, jer oni u osnovi zahtevaju veštine koje AI teško da može da oponaša.27

Uzmimo, na primer, terapeute, trenere, ili vaspitače u vrtiću: ovi poslovi zahtevaju opšte razumevanje sveta, uključujući ljudsku psihologiju, društvenu inteligenciju i rezonovanje, sposobnost da se nosi sa neobičnim okolnostima i tako dalje. AI mogu čak da jedan deo radne snage ponovo vrati u radni proces. Na primer, napredak u robotici mogao bi biti neprocenjivo olakšanje za osobe sa invaliditetom, pružajući im priliku da zadrže neke poslove, dok napredak AI u obradi jezika može isto učiniti za osobe koji imaju poteškoća pri korišćenju postojećih računarskih interfejsa.

“Svakako da je moguće kako uopšte nisam u pravu, i da će napredak u AI nastupiti daleko brže nego što sam očekivao; tehnološki napredak je jako teško prognozirati. Ali, ako neko zaista veruje da postoji dobra šansa da će veštačka inteligencija u relativno kratkom roku uveliko premašiti ljudske sposobnosti, onda čovek, kao vrsta, ima veći problem nego što je dilema da li primeniti osnovni prihod ili ne (zapravo, postoje ljudi koji ozbiljno brinu o tome, ali to je već jedan poseban članak).

Ideja da će najskoriji napredak u razvoju AI sprečiti većinu ljudi da smisleno doprinose društvu je besmislica. Možda ćemo, doduše, morati da načinimo neke promene u načinu na koji društvo funkcioniše, uključujući i to što će biti olakšana obuka za radnike koji su se izmestili usled gubitka posla; a možda će u nekom trenutku nezadrživa robotizacija nagnati državu da poveća javnu potrošnju, trošeći na (recimo) pažljivo odabrane infrastrukturne projekte kao protivtežu gubitku radnih mesta u privatnom sektoru. Takođe, treba imati na umu da napredak u AI može doći neočekivano, pa stoga treba učiniti sve kako bismo se na to pripremili, stvarajući društvo dovoljno otporno na takve šokove.

Ali ideja da smo zakoračili u tehno-utopije skoro bez potrebe za ljudskim radom nije podržana trenutnim stanjem u oblasti AI istraživanja. Zemlje koje u potpunosti revidiraju svoje sisteme zaštite na osnovu ove ideje, sada bi se mogle jako pokajati – ukoliko postane jasno da najnoviji napredak u AI, koliko god impresivan, i dalje ima svoja ograničenja.

MIT Technology Review, 31. Okt, 2016