Guglovi telefoni i računari kao „trojanci“ za AI

Fokus velike Guglove hardverske prisutnosti među android telefonima uopšte se ne tiče razvoja hardvera; u pitanju je razvoj veštački inteligentnog „digitalnog pomoćnika“ koji je zadužen za svaki vaš naum kao i nadgledanje svake vaše interakcije.

Asistent je nevidljiv, u smislu dizajnerskog žargona. Sveobuhvatni „savetodavac“ neprestano radi u pozadini, predviđa vaše potrebe, obrađuje vaše zahteve i nudi uredno raspoređene odgovore na vaša pitanja. Nikada ne uočavate da „pod haubom“ ima nekih „zupčanika“ koji u pozadini funkcionišu, samo unosite (ili izgovarate) komandu i čitate (ili slušate) prilagođavajuće reakcije koje vam asistent ispostavlja na ekranu ili preko zvučnika.

Ovo zahteva nešto više od pametnog telefona, što objašnjava gadžete koje je Gugl ubacio na tržište. Ali, kako u Guglu vole da kažu, ovo je tek početak bavljenjem sistemom sa više portala koji uključuje njihove mobilne uređaje tipa Pixel, ali i Amazonov uređaj kao što je Echo. “Da smo pre nekoliko godina, pričali o ovome, bili bismo ubeđeni da će telefon biti interfejs za sve”, kaže Alen Blek, naučni saradnik pri Institutu za jezičke tehnologije Univerziteta Karnegi Melon.

To, međutim, više nije slučaj. Gugl želi svoj nematerijalni interfejs gde god da ste, što zahteva da ga imate svuda – u vašem džepu, u vašem automobilu, u svojoj kuhinji i tako dalje – tako da sama oprema može „naučiti“ sve o vama i pružiti vam osećaj kako je prilagođena isključivo vama (tzv „personalno iskustvo“). Do sada je Google se dosad samo površno bavio uređajima, oslanjajući se uglavnom na kompanije poput Samsunga, HTC-a i Motorole kako bi obezbedio hardver koji pokreće njihov softver.

A veštačka inteligencija će početi da radi za vas tek ukoliko je „utelovite“ u hardver.

U tom smislu, ukoliko Gugl želi da napravi sopstveni nevidljivi AI mejnstrim, on za to mora da proizvede sopstvenu opremu. Dva uređaja su tu od posebne važnosti: Pixel (koji veoma podseća na Eplov iPhone), i Guglov kućni asisten „Home“ koji podseća na Amazonov „Echo“ (i čiji oblik pomalo podseća na Glejdov osveživač vazduha). Ovi portali (Epl, Amazon) su za Gugl Asistenta privlačni, ali se tu ne radi ni o čemu spektakularnom. “Nema ničeg što bi ‘zatreslo Zemlju’ u vezi njih, a telefon je samo parče aluminijuma”, kaže Mark Hang, analitičar u istraživačkoj kompaniji Gartner. “Ono što jeste važno je činjenica da ste u mogućnosti da ih jednostavno upotrebite i da pri tom fnkcioniše besprekorno kao konverzacijski interfejs.”

Uređaji, drugim rečima, postoje samo kao „posuda“ u koju stavljate „ono glavno“. Rik Osterloh, rukovodilac Google-ove grupe za razvoj novih uređaja nagovestio je ovo dok je govorio o Guglovoj odluci da pravi hardver na način da kompanija može “obaviti mnoštvo stvari bez brige o osnovnoj tehnologiji koja je ’pod haubom’ “. U ovom slučaju, “obaviti stvari” znači obezbediti korisniku bogato personalno AI iskustvo – oblast na koju je Google potrošio bolji deo svog postojanja, pripremajući se za ovaj trenutak.

Razmislite o Guglovoj banci podataka, pod nazivom Knowledge Graph, koja je poboljšala rezultate vaše pretrage od 2012. godine. Ovo skladište informacija danas sadrži više od 70 milijardi činjenica. Vaš AI mobilni asistent u Guglovom telefonu može na dodir da pristupi ovom spremištu, a njegov korisnički interfejs (UI) će se poboljšati samo ukoliko bude „gledao“ – i „saznavao“ – kada i kako mu pristupamo mi, ljudi – korisnici.

Ovo objašnjava zašto Google predlaže da njegov „Home“ smestite u svaku prostoriju vašeg doma. “AI ’ će biti maksimalno pripravan i koristan, to jest konstantno ‘ispred vas’ samo ukoliko ga ugradimo u našu opremu (koja je u vašem stanu)”, kaže Džon Men, dizajner sektora za razvoj interakcije korisničkih interfejsa u Artefact-u. “Potrebne su vam pristupne tačke tako da biste veštaćku opremu osećali sveprisutnom i korisnom na svakom vašem koraku.” Danas je vaša primarna pristupna tačka verovatno vaš telefon, a vaš dom je među onim retkim mestima u kojima AI možda nije na vašoj strani. Ako Google bude u stanju da vas ubedi da ‘posejete’ pristupne tačke (zapravo Guglove ’Home’ personalne asistente) svuda oko vas, i tek onda ćemo biti u mogućnosti da vas obučimo kako da pozivate „Home“ asistenta odakle god želite, za šta god želite i kad god želite.

Prestrojavanje korisnika ka interakcijama koje su proizvod vaših namera – koje će Guglov lični pomoćnik gotovo unapred predviđati i usmeravati ka tačno ciljanim korisnim informacijama – jeste ključno za rad veštačke inteligencije. Uzmite ovu tipičnu interakciju Spotify: Otvorite telefon, otvorite Spotify, kliknite na pretragu i otkucajte ono što želite čuti. Ako samo slušate na telefonu, završili ste. Za sve ostalo, trebaće malo više posla. “Ako ne želim da muziku slušam samo na telefonu već da je preusmerim na zvučnike u mojoj dnevnoj sobi, to podrazumeva da ću vam napraviti aplikaciju koja će računati na više koraka koje moram da preduzmem, naime, kako bi aplikacija uspešno otkrivala kontaktne tačke u prostorijama vašeg doma”, kaže Men. Naši dizajneri puno su mozgali kako da aplikacija uspešno mapira ove kontaktne tačke, obezbeđujući vam da dobijate kontrolisane količine informacija po logičnom redosledu. AI je u stanju da sve ovo obrađuje. Hoćete muziku? Jednostavno recite: “Pusti SubRosa.” Što je lakši pristup kućnim asistentima u vašem okruženju – odnosno, što je veći broj AI uređaja u prostorijama – tim više od njih možete zahtevati i zauzvrat dobiti.

Ovde je Guglov model Be Everywhere postao zanimljiv. Što se sa više portala okružite, više će saznanja dobiti i vaš kućni asistent, koji onda može saznati ne samo kako tražite da vam se pomogne, već i gde, i u kom kontekstu. “Ako će vaši budući AI asistenti biti u stanju da vam aktivno i efikasno pronalaze odgovore, onda će to biti prilično revolucionarno”, kaže Hang. Zapravo, Google već razmišlja o tome kako je najbolje interaktivno raditi sa vama u okruženju sa više portala; ako postavite pitanje naglas i više kućnih uređaja čuje vaš zahtev, najbliže „čvorište“ tj „portal“ odosno tačka interakcije će vam dati odgovor.

Lako je zamisliti kako će ova vrsta kontekstualne svesti uneti dodatnu dimenziju veštačkoj inteligenciji vašeg kućnog pomoćnika, čineći ga zaista korisnim. Ovo je od suštinskog značaja za ispunjavanje – ali i nadmašivanje – naših očekivanja kao korisnika. “Mislim da se sada krećemo ka fazi gde ćemo očekivati da u bilo kom trenutku dobijemo audio-odgovor od našeg govornog interfejsa”, kaže Blek. Odluka Google-a da svoj AI utka u mrežu (svojih) uređaja koji zajedno funkcionišu svakako ukazuje na to.

Brian Barrett, Andy Greenberg, Jordan Mcmahon, David Pierce, Margaret Rhodes, Robbie Gonzalez, Elizabeth Stinson, wired.com

Uloga pokera u razvoju veštačke inteligencije

Igranje pokera neizostavno zahteva baratanje nepotpunim informacijama, što ovu igru čini vrlo kompleksnom. Uz to, poker je umnogome odraz situacija koje postoje u stvarnom svetu.

Kao što je veliki Kenny Rogers jednom rekao, „dobar kockar mora da zna kada da ide dalje a kada da odustane („A good gambler has to know when to hold ’em and know when to fold ’em“). Ovog januara se u kockarnici Rivers Casino u Pitsburgu tri sedmice uzastopno kompjuterski program Libratus nadmeće sa šampionima u pokeru i pritom ih – devastira. Ovo se, doduše, dogodilo po prvi put otkad se čovek i AI sukobljavaju, ali po svemu sudeći neće biti i poslednji (slično je bilo i sa šahom: bilo je potrebno neko vreme da naučnici „našteluju“ mašinu, odnosno usavrše softver Deep Blue koji je tukao najjače šahovske velemajstore sveta). U Kasinu Rivers, ovog meseca računar nam drži lekciju: pokazuje nam kako može da odigra bolje od bilo kog igrača od krvi i mesa.

Libratus je za to vreme odigrao hiljade varijanti pokera; heads-up, igranje u parovima, varijantu no-limit Texas Hold’em pokera itd… a sve to protiv nekoliko najvećih pokeraških eksperata i profesionalaca. Svake godine, borba ljudi protiv mašina u kasinu Rivers privlači veliku medijsku pažnju, a Libratus je u jednom trenutku „bio dobar“ 800 hiljada dolara; toliko je „inkasirao“ igrajući protiv ljudi. Toliko je Libratus dobro igrao da se stekao utisak da je njegova pobeda, ma koliko daleko od zagarantovane, mogla biti ostvarena igrajući karte bez potpunih informacija i „samo“ baratajući teorijom verovatnoće.

AI je nepredvidiva na način koji je ljudima stran

Trijumf bi za Libratus i njegove tvorce bio veliki uspeh u oblasti razvoja veštačke inteligencije. Poker zahteva razmišljanje, kombinatoriku, baratanje verovatnoćom, dobru memoriju i, naravno, inteligenciju. Ova kockarska igra fundamentalno se razlikuje od igara kao što su Dame, šah ili go s obzirom da protivnički igrač u rukama uvek ima nepoznatu opciju – kombinaciju skrivenu od očiju drugih igrača. U igrama zasnovanim na “nepouzdanim-nepotpunim informacijama,” enormno je komplikovano shvatiti i proniknuti u moguću idealnu strategiju koju bi svaki protivnik primenio igrajući protiv vas. A u no-limit verziji teksaškog Hold’em pokera ovo je poseban izazov jer bi protivnik mogao da podiže ulog proizvoljno – bez ograničenja (otuda se ova verzija teksaškog pokera i naziva „no-limit“).

“Poker je za veštačku inteligenciju bio i ostao dosad najveći izazov, u koji je tek nedavno uspeo da pronikne”, kaže Endrju Ng (Andrew Ng), glavni naučnik u kompaniji Baidu. “Ne postoji niti jedan optimalan potez, ali – umesto izvesnosti – AI igrač mora da nasumično deluje kako bi sopstvenim neplanskim potezima nadomestio nepoznavanje svih podataka (u ovom slučaju, to je poznavanje svih protivnikovih karata); tako kod protivnika unosi neizvesnost kada i da li uopšte blefira, a protivniku je, s druge strane, teško da uspostavi bio kakvu efikasnu strategiju jer nije siguran da li pri podizanju uloga mašina blefira ili ne.”

Kreatori Libratusa su Tuomas Sandholm, profesor računarstva na univerzitetu Karnegi Melon (CMU), i njegov student Noam Brown. Sandholm, stručnjak za teoriju igara i AI koji je iz Finske došao u SAD kako bi radio svoj doktorat, kaže da je neverovatno koliko su dugo ljudi bili u stanju da nadigraju računar. “Uvek se zapanjim pri pomisli koliko dobro igraju vrhunski profesionalci”, kaže on. “Od svih ovih igara kojih se njihov Libratus poduhvatio, poker je bila jedina u kojoj AI nije uspevala da pokaže nadljudske performanse.”

Istraživači uposleni u razvoju veštačke inteligencije koriste primenjenu matematičku oblast koja se zove teorija igara i/ili matematiku strateškog odlučivanja, nastojeći da iznađu najbolju strategiju na osnovu obilja varijabli (neizvesnih ishoda, nepoznatih vrednosti); ova strategija poznata je kao teorija (uspostavljanja) ravnoteže, ili ekvilibrijum. Upravo iz razloga što postoji toliko mnogo mogućih ishoda, ovo obično podrazumeva neku vrstu aproksimiranja – traženja najpribližnije verovatne vrednosti koja bi se mogla iskoristiti u igri.

“Bilo da je taj potez dobar ili ne, sve zavisi od stvari koje je nemoguće posmatrati, sve vrednosti su skrivene od oka” kaže Vinsent Conitzer, profesor AI i teorije igara na Univerzitetu Djuk. “Ovo, takođe, rezultira potrebom da za protivnika uvek ostanete – nepredvidivi. Međutim, ukoliko stalno blefirate – niste dobar igrač. Teorija igara vam govori kako i do koje mere treba da svoju igru na neki način učinite „nasumičnom“ – ali samo na način koji je u izvesnom smislu optimalan.”

Sandholm je prošle godine predvodio razvoj prethodnog programa za igranje pokera po imenu Klaudiko (Claudico), kojeg je ubedljivo potuklo nekoliko profesionalnih igrača pokera. On objašnjava da, za razliku od Klaudika, Libratus koristi nekoliko novih dostignuća kako bi postigao tako visok nivo kvaliteta igre. Ovo uključuje nove tehnike aproksimacije optimalnog poteza (ekvilibrijum), kaže Sandholm, kao i nove metode analize najverovatnijih ishoda u kasnijim fazama igre, kako se karte tokom partije sve više otvaraju (a samim tim i input podataka u mašini povećava). Ova analiza krajnjeg ishoda igre je u računarskom smislu veoma zahtevna i izazovna, a sprovođena je tokom svake partije u Superračunarskom centru u Pitsburgu, u objektu kojeg vode CMU i Univerzitet u Pitsburgu.

Napredak koji mašine imaju u učenju strategija ljudskih igara i AI već su urodili plodom; nedavno se pojavio veliki broj superprograma za igranje ljudskih igara. Prošle godine, istraživači na projektu Deep Mind, izdanku Guglovog Alphabet-a, razvili su program sposoban da pobedi jednog od najboljih svetskih igrača go-a. Ovo dostignuće je bilo utoliko spektakularnije jer se radi o izuzetno složenoj igri, a i zato što je tokom igranja teško meriti koliko ste napredovali.

Nekoliko je različitih grupa istraživača bilo fokusirano na borbu protiv pokeraša „od krvi i mesa“. Još jedan akademski tim, i to s Univerziteta Alberta u Kanadi, Karlovog Univerziteta i Češkog tehničkog univerziteta u Češkoj nedavno je razvilo program zvani Deepstack koji je već potukao nekoliko profesionalnih igrača u heads-up no-limit Texas Hold’em pokeru (videti članak “Poker je najnovija igra u kojoj se iskušava moć veštačke inteligencije”). Međutim, kaže Sandholm, igrači uključeni u meču protiv Libratusa su daleko jači, a takođe imaju mogućnost da igraju daleko više ruku protiv mašine; ovo bi trebalo da obezbedi veći značaj statističkih rezultata.

Tehnike koje se  koriste za izgradnju još pametnijih poker-bota može naći daleko veću primenu u stvarnom svetu. Teorija igara je već primenjivana na istraživanju o združenim hakerskim napadima i sajber-bezbednosti, takođe našavši svoju primenu u automatizaciji navođenja taksi-vozila kao i robotskog planiranja, kaže Sem Gancfrid (Sem Ganzfried), docent na Međunarodnom univerzitetu Florida u Majamiju, koji je bio uključen i u razvoj Klaudika.

Međutim, iako Libratus trijumfuje, to ne znači da ljudi više ne zaslužuju da imaju svoje mesto za pokeraškim stolom. Multiplejer verzijom no-limit Texas Hold’em pokera ne može se ovladati ukoliko koristite tehnike koje koristi Libratus.

Will Knight MIT tech-review Jan 23, 2017